椭圆X^2/45 +Y^2/20=1的左右焦点分别为f1和f2,过中心o作直线与椭圆交与A,B两点,若三角形ABF2的面积为20,求直线AB的方程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:09:54

椭圆X^2/45 +Y^2/20=1的左右焦点分别为f1和f2,过中心o作直线与椭圆交与A,B两点,若三角形ABF2的面积为20,求直线AB的方程.
椭圆X^2/45 +Y^2/20=1的左右焦点分别为f1和f2,过中心o作直线与椭圆交与A,B两点,若三角形ABF2的面积为20,求直线AB的方程.

椭圆X^2/45 +Y^2/20=1的左右焦点分别为f1和f2,过中心o作直线与椭圆交与A,B两点,若三角形ABF2的面积为20,求直线AB的方程.
椭圆x^2/45+y^2/20=1 ==>a^2=45 b^2=20 ==>c^2=25 ==>c=5 ==>F1(-5,0) F2(5,0)
显然|yA|=|yB|,而三角形面积=1/2*(|yA|+|yB|)*|OF2|=5/2*2|2yA|=20,所以
|yA|=4 再代入椭圆方程得|xA|=3,
所以AB的直线方程为:y=±4/3x
方法二:
设A点在x轴上方.
注意到OF2把三角形ABF2分成了面积相等的两个三角形.即三角形AF2O的面积为10.其底为c=5.
故其高为:4.即A(x,4).
代入方程得:x=3 或-3
故得AB的方程为:y=(4/3)x 或y=-(4/3)x
方法三:
可设直线AB的方程为x=ky,代入椭圆方程得
k²y²/45+y²/20=1
(4k²+9)y²=180
y²=180/(4k²+9)
y1=-6√(5/(4k²+9))
y2=6√(5/(4k²+9))
c²=45-20=25
c=5,即OF2=5
S△ABF2=S△AOF2+S△BOF2
=1/2*5*(y2-y1)
=5*6√(5/(4k²+9))=20
解得k=3/4或k=-3/4
所以方程为x=3/4y或x=-3/4y
即y=4x/3或y=-4x/3

椭圆的方程?以双曲线 x^2/4 -y^2=1 的左焦点为焦点,左准线为准线的椭圆方程是什么? 过椭圆x^2/5+y^2=1的左焦点F1的倾斜角为45°的直线L交椭圆于AB两点的长度 椭圆x方+2y方-2x-4y+1=0的左焦点坐标是? 已知椭圆x²/2+y²=1,求过椭圆左焦点f引椭圆的割线,求截得弦中点p的轨迹方程 点A、B分别是椭圆x^2/36+y^2/20=1长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴的上方...点A、B分别是椭圆x^2/36+y^2/20=1长轴的左、右端点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴 求以椭圆x^2/25+y^2/16=1的左焦点的抛物线的标准方程 求以椭圆x^2/25+y^2/16=1的左焦点的抛物线的标准方程 椭圆x^2/4+y^2/b^2=1(>0)的焦点在x轴上,右顶点关于x-y+4=0的对称点在椭圆的左准线上,求椭圆方程 已知椭圆x^2/25+y^2/9=1上一点到左准线的距离为5,求它到左焦点距离 设点f1是椭圆x^2/2+y^2=1的左焦点,弦AB过椭圆的右焦点,求三角形F1AB面积的最大值 抛物线的焦点为椭圆x^2/9+y^2/4=1的左焦点,顶点在椭圆中心,求抛物线的方程 过椭圆x^2/5+y^2/4=1的左焦点作椭圆的弦,求弦中点的轨迹方程.要步骤 谢谢了 过椭圆x^2/5+y^2/4=1的左焦点作椭圆的弦,求弦中点的轨迹方程 经过椭圆x^2/12+y^2/8=1的左焦点,倾斜角为3π/4的直线被椭圆截得的线段长是 椭圆x^2/100+y^2/36=1上一点P到左焦点的距离是12.则它到椭圆右准线的距离是多少 过椭圆X^2/4+Y^2=1的左焦点的两条垂直直线与椭圆交于ABCD四点,求四边形ABCD最小面积 已知椭圆x^2/4+y^2=1,过左焦点F1的直线交椭圆于A、B点,求AB中点N的轨迹方程 M是椭圆x^2/9+y^2/4=1上任意一点,F1,F2是椭圆的左、右焦点,则|MF1| *|MF2|的最大值是?