已知数列的前n项和Sn=2n^2+2n,数列bn的前n项和Tn=2-bn,设cn=an*bn,证明:当且仅当n>=3时c(n+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:42:30
已知数列的前n项和Sn=2n^2+2n,数列bn的前n项和Tn=2-bn,设cn=an*bn,证明:当且仅当n>=3时c(n+1)
已知数列的前n项和Sn=2n^2+2n,数列bn的前n项和Tn=2-bn,设cn=an*bn,证明:当且仅当n>=3时c(n+1)
已知数列的前n项和Sn=2n^2+2n,数列bn的前n项和Tn=2-bn,设cn=an*bn,证明:当且仅当n>=3时c(n+1)
Sn=2n²+2n
Sn-1=2(n-1)²+2(n-1)
上面相减
an=2(2n-1)+2
an=4n
Tn=2-bn
Tn-1=2-b(n-1)
相减得
bn=-bn+b(n-1)
bn=1/2 b(n-1)
{bn}是等比数列,b1=T1=2-b1,b1=1
故bn=(1/2)^(n-1)
是不是:cn=an^2*bn=(4n)^2*(1/2)^(n-1)=n^2*2^(5-n)
n>=3时,c(n+1)/cn=(n+1)^2*2^(4-n)/[n^2*2^(5-n)]=(n+1)^2/[n^2*2]=(n^2+2n+1)/(2n^2)
S(n+1)=2n^2+6n+4 T(n+1)=2-b(n+1)
a(n+1)=S(n+1)-S(n)=4n+4 b(n+1)=T(n+1)-T(n)=bn-b(n+1)
故an=4n b(n)=2b(n+1) 又b1=1 所以bn=(1/2)^(n-1)
cn=4n(1/2)^(n-1) c(n+1)=4(n+1)*(1/2)^(n)
c(n+1)/cn=(n+1)/2n 故当且仅当n>=2时c(n+1)
已知数列的前n项和Sn=n²+2n 求an
已知数列{an}的前n项和为Sn,an+Sn=2,(n
已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn
已知数列{an}的前n项和sn=10n-n^2(n属于N*),求数列{an绝对值}的前n项和Bn
已知数列{An}的前N项和Sn=12n-N^2求数列{|An|}的前n项和Tn 并求Sn的最大值
已知数列an的前n项和Sn,求数列的通项公式.(1)Sn=3n²-n (2)Sn=2n+1
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
已知数列an的前n项和sn满足sn=n的平方+2n-1求an
已知数列AN的前N项和SN,SN=2N^2+3n+2,求an
已知数列的前n项和sn满足2sn-3an+2n=0(n
已知数列an的前n项和为Sn,且An=3^n+2n,则Sn等于
已知数列{an}的前n项和的公式为Sn=32n-n^2,求数列{|an|}的前n项和S`n
已知数列通项an=n/n^2,求数列的前n项和Sn已知数列通项an=n/n^2,求数列的前n项和Sn
已知数列通项an=n/2^n,求数列的前n项和Sn
已知数列{an}的前n项和为Sn=n^2-3n,求证:数列{an}是等差数列
已知数列Cn=(2n-1)*3^(n-1),求该数列的前n项和Sn
已知数列{An}的前n项和Sn=3n²-2n,证明数列{An}为等差数列
已知数列{an}满足an=2n/3^n,求此数列的前n项和sn