如图,已知正方形ABCD中,点E是对角线AC上的一点,EF⊥CD,EG⊥AD,垂足封边为点F,G.求证:BE=FG
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:35:59
如图,已知正方形ABCD中,点E是对角线AC上的一点,EF⊥CD,EG⊥AD,垂足封边为点F,G.求证:BE=FG
如图,已知正方形ABCD中,点E是对角线AC上的一点,EF⊥CD,EG⊥AD,垂足封边为点F,G.求证:BE=FG
如图,已知正方形ABCD中,点E是对角线AC上的一点,EF⊥CD,EG⊥AD,垂足封边为点F,G.求证:BE=FG
证明:连接ED
∵EF⊥CD,EG⊥AD
∴四边形EFDG是矩形
∴DE=FG
∵ABCD是正方形
∴∠BAE=∠DAE=45°
∵AB=AD,AE=AE
∴△ABE≌△DAE
∴BE=DE
∴BE=GF
GE交BC于M,FE交BA于N,易证AGEN和FEMC都是正方形,,故EN=GE,EF=EM,根据勾股定理,BE平方=EN平方+EM平方,GF平方=GE平方+EF平方,故BE平方=GF平方,所以BE=FG
你只需要证明GF=1/2AC BE=1/2AC 就可以得到BE=GF 啦
我想这个应该是很简单的吧
G是AD中点 F是DC中点(通过条件中的E是重点 和两个垂直条件可得到)
所以GF平行与AC 且等于1/2的AC
就得到了 呵呵
过E分别做EF'⊥BC , EG'⊥AB
由正方形性质知道∠CAG=∠CAB=45度
所以 直角△AGE 和 直角△AG’E 都是等腰直角三角形
所以四边形AG’EG四个角都是直角,四条边相等,是正方形。
同理EF’CF也是正方形。
四边形BF’EG’中∠ABC=∠EG’B=∠EF’B=90度
所以,四边形BF’EG’是矩形,同理,GEFD也是矩形。...
全部展开
过E分别做EF'⊥BC , EG'⊥AB
由正方形性质知道∠CAG=∠CAB=45度
所以 直角△AGE 和 直角△AG’E 都是等腰直角三角形
所以四边形AG’EG四个角都是直角,四条边相等,是正方形。
同理EF’CF也是正方形。
四边形BF’EG’中∠ABC=∠EG’B=∠EF’B=90度
所以,四边形BF’EG’是矩形,同理,GEFD也是矩形。
在直角△GEF和直角△EG’B中
BG’=EF’=EF ,EG’=EG
所以直角△GEF≌直角△EG’B
所以BE=GF
收起