求微分方程的通解 (1-x^2)y"-xy'=2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:39:19
求微分方程的通解 (1-x^2)y"-xy'=2
求微分方程的通解 (1-x^2)y"-xy'=2
求微分方程的通解 (1-x^2)y"-xy'=2
不显含y型,记y'=p,则y"=dp/dx=p',
原微分方程可化为
(1-x^2)p'-xp=2
p'-x/(1-x^2)p=2/(1-x^2)
公式法得
p=[e^(∫x/(1-x^2)dx][C1+∫2/(1-x^2)[e^(∫-x/(1-x^2)dx]dx]
=e^(-1/2)ln(1-x^2)[C1+∫{2/(1-x^2)e^[(1/2)ln(1-x^2)]}dx]
=(1-x^2)^(-1/2)[C1+∫{[2/(1-x^2)](1-x^2)^(1/2)}dx]
=(1-x^2)^(-1/2)[C1+∫{[2/(1-x^2)]^(1/2)dx]
=(1-x^2)^(-1/2)[C1+2arcsinx]
即dy/dx=(1-x^2)^(-1/2)[C1+2arcsinx]
∫dy=∫(1-x^2)^(-1/2)[C1+2arcsinx]dx
y=(1/2)∫[C1+2arcsinx]d(C1+2arcsinx)
得y=(1/4)(C1+2arcsinx)^2+C2
求微分方程y'=y/(1+x^2)的通解
求微分方程的通解.x^2 y+xy'=1
求微分方程 y '= x^2+ 1 的通解
求微分方程y'+y/x=1/x的通解
求微分方程y'+y/x=1/x的通解
求微分方程(x-y+1)y'=1的通解.
求微分方程y'+y/x=x2+1的通解
求微分方程y’=1/(x+e^y)的通解!
求微分方程y''+y'/(1-x)=0的通解
求微分方程y''+y=x+1的通解?
求微分方程的通解y''+2y'=-x+3
求微分方程y+2y=x的通解
求微分方程y+2y'=x 的通解
求微分方程y+2y=xe^-x 的通解.
求微分方程y'+y=e^(-2x)的通解
求微分方程y''-y=xe^2x的通解
求微分方程y'=e^(2x-y)的通解
求微分方程y'-x/y=2xsin2x的通解.