已知函数f x=1/3x³+bx²+cx(b,c为常数)的两个极值点分别是α,β,f x在点(-1,f(﹣1))处切线为l,其斜率为k1;在点﹙1,f﹙1﹚﹚处的切线为L,斜率为K2.⑴若L1⊥L2,|α-β|=1,求b,c; ⑵若α∈﹙﹣3,﹣

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:45:33

已知函数f x=1/3x³+bx²+cx(b,c为常数)的两个极值点分别是α,β,f x在点(-1,f(﹣1))处切线为l,其斜率为k1;在点﹙1,f﹙1﹚﹚处的切线为L,斜率为K2.⑴若L1⊥L2,|α-β|=1,求b,c; ⑵若α∈﹙﹣3,﹣
已知函数f x=1/3x³+bx²+cx(b,c为常数)的两个极值点分别是α,β,f x在点(-1,f(﹣1))处切线为l,其斜率为k1;在点﹙1,f﹙1﹚﹚处的切线为L,斜率为K2.⑴若L1⊥L2,|α-β|=1,求b,c; ⑵若α∈﹙﹣3,﹣2﹚,β∈﹙0,1﹚,求k2的取值范围

已知函数f x=1/3x³+bx²+cx(b,c为常数)的两个极值点分别是α,β,f x在点(-1,f(﹣1))处切线为l,其斜率为k1;在点﹙1,f﹙1﹚﹚处的切线为L,斜率为K2.⑴若L1⊥L2,|α-β|=1,求b,c; ⑵若α∈﹙﹣3,﹣