如图,抛物线y=ax^2+bx+c经过A(-1,0)B(3,0)C(0,3)三点,对称轴与抛物线交于点P,与直线BC相交于M.连接CP,在第一象限的抛物线上是否存在一点R,使△RPC与△RMB面积相等,若存在,求出点R坐标;若不

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:19:07

如图,抛物线y=ax^2+bx+c经过A(-1,0)B(3,0)C(0,3)三点,对称轴与抛物线交于点P,与直线BC相交于M.连接CP,在第一象限的抛物线上是否存在一点R,使△RPC与△RMB面积相等,若存在,求出点R坐标;若不
如图,抛物线y=ax^2+bx+c经过A(-1,0)B(3,0)C(0,3)三点,对称轴与抛物线交于点P,与直线BC相交于M.
连接CP,在第一象限的抛物线上是否存在一点R,使△RPC与△RMB面积相等,若存在,求出点R坐标;若不存在,请说明理由.

如图,抛物线y=ax^2+bx+c经过A(-1,0)B(3,0)C(0,3)三点,对称轴与抛物线交于点P,与直线BC相交于M.连接CP,在第一象限的抛物线上是否存在一点R,使△RPC与△RMB面积相等,若存在,求出点R坐标;若不
设抛物线方程为 y=a(x+1)(x-3),再将C点坐标(0,3)代入确定 a=-1;所以 y=-x²+2x+3;
对称轴 x=1,P点坐标(1,4),M点坐标(0,2);
假设存在点 R(x,y),作RT⊥x轴交 x 轴于T、PW⊥x轴交于W;
S△RMB=S◇RMWT+S△RBT-S△MWB=[(2+y)(x-1)/2]+[(3-x)y/2]-(2*2/2)=x+y-3;
S△PRC=S◇PCOW+S◇PWTR-S◇COTR
=[(3+4)*1/2]+[(4+y)*(x-1)/2]-[(3+y)*x/2]=(x-y+3)/2;
按题意,S△RMB=S△PRC,x+y-3=(x-y+3)/2;
化简 x+3y-9=0,即 -3x²+7x=0,解得 x=7/3(x=0 对应B点,不合题意,舍去);
y=-(7/3)²+2*(7/3)+3=20/9;R点坐标(7/3,20/9);

如图,抛物线y=ax^2+bx+c(a 抛物线证明抛物线:y=ax^2+bx+c a 如图已知抛物线y=ax^2+bx+c经过A(-3,0)B,(1,0)C(0,3)三点 现在回答我哦 如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.1 .求抛物线的解析式及对称轴 如图已知抛物线y=ax平方+bx+c经过原点和点(-2,0),则2a-3b____0(填大于 小于 等于)要过程 如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax²+bx+c的顶点为A,且经过点B. 1.求该抛物线的解 如图,已知抛物线y=ax^2+bx+c经过A(-1,0)B(3,0)C(0,-3),直线BC经过B.C两点(1)求抛物线的函数解如图,已知抛物线y=ax^2+bx+c经过A(-1,0)B(3,0)C(0,-3),直线BC经过B.C两点(1)求抛物线的函数 已知抛物线y=ax^2+bx+c经过点A(4,2)B(5,2) 求抛物线表达式 如图,已知抛物线y=ax+bx+c,4a>c是否正确 如图已知经过原点的抛物线y=ax2+bx(a不等于0)经过A(-2,2),B(6,6)两点已知过原点的抛物线y=ax2+bx+c经过如图,已知经过原点的抛物线y=ax^2+bx(a≠0)经过A(-2,2),B(6,6)两点,与x轴的另一交点为F,直线AB与x轴 二次函数y=ax^+bx+c经过点A(1,3),B(2,4),C(3,3),那么抛物线y=ax^+bx+c的顶点坐标? 二次函数y-ax的平方+bx+c经过点A(1,3),B(2,4),C(3,3),那么抛物线y=ax的平方+bx+c 如图,已知抛物线y=ax²+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点 如图 已知抛物线y=ax的平方+bx+c经过a(-1,0)、b(3,0)、c(0,3) 如图,二次函数y=ax²+bx+c,经过图像ABC三点.观察图像,写出A.B.C三点坐标,并求出抛物线关系式 已知:抛物线y=ax^2+bx+c(a 抛物线y=ax^2+bx+c(a 已知抛物线y=ax^2+bx+c(a