lim/x→1 x^3-3x^2+2/x^3-x^2-x+1利用罗比塔法则求极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:55:36
lim/x→1 x^3-3x^2+2/x^3-x^2-x+1利用罗比塔法则求极限
lim/x→1 x^3-3x^2+2/x^3-x^2-x+1利用罗比塔法则求极限
lim/x→1 x^3-3x^2+2/x^3-x^2-x+1利用罗比塔法则求极限
lim/x→1/[(x^3-3x^2+2)/(x^3-x^2-x+1)]是lim(0/0)模型
∴由洛必达法则得原式=lim/x→1/[(3x^2-6x)/(3x^2-2x-1)]=lim/x→1/[3x(x-2)/(x-1)(3x+1)]
因为分子不为0,分母趋近于0,∴原式=∞
lim(x→1)(x^3-3x+2)/(x^3-x^2-x+1)
lim(x→1)[(x^(3x-2)-x)sin2(x-1)]/(x-1)^3
lim x→∞(2x+1)/(3x-4)
lim(x→0)2x^3-x+1
lim((√1+x^2)+x)/((√x^3+x)-x)x→+无穷大
lim(x->无穷大){(2^x-3^x)/2}^(1/x)
lim(x->0)((2-x)/(3-x))^1/x
求lim(x→0)x cos 1/x lim(x→∞)x^2/ (3x-1)的极限
lim(x+1)^x+1(x+3)^x+3/x^2x+4 x趋于无穷
lim(x→∞)(4x^3+2x-1)/(2x^3-3x+1)
lim(x→∞)(2x^3-x^2-3)/(x^3-x+1)
lim x→1 (x^2-4x+3)/(x^4-4x^2+3)
lim(x→∞)[(x^3+x^2+x^1+1)^(1/3) - x] 的极限.
lim x→0 (x^2+2x-1)/(x^3-2x)的极限是多少
lim(x→∞)[(X^2+2x+5)/(3x^2-x+1) =
lim(x→0)[(1+X)(1+2X)(1+3x)-1]/x
lim √(3-x)-√(1+x)/x平方+x-2x→1
lim(x→∞)(x^2+x)/(x^4-3x-1)的极限