计算1×2²+2×3²+3×4²+4×5²+······+18×19²+19×20²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:52:49

计算1×2²+2×3²+3×4²+4×5²+······+18×19²+19×20²
计算1×2²+2×3²+3×4²+4×5²+······+18×19²+19×20²

计算1×2²+2×3²+3×4²+4×5²+······+18×19²+19×20²
n(n+1)²=n(n+1)(n+2)-n(n+1)
原式=1×2×3+2×3×4+...+19×20×21-(1×2+2×3+...+19×20)
1×2×3=(1×2×3×4-0×1×2×3)÷4
2×3×4=(2×3×4×5-1×2×3×4)÷4
.
1×2=(1×2×3-0×1×2)÷3
2×3=(2×3×4-1×2×3)÷3
.
原式=19×20×21×22÷4-19×20×21÷3
=43890-2660
=41230