数列{an}满足a1=1,a(n+1)=2^(n+1)an/an+2^n(n∈N) (1)证明数列{2^n/an}是等差数列,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:45:17
数列{an}满足a1=1,a(n+1)=2^(n+1)an/an+2^n(n∈N) (1)证明数列{2^n/an}是等差数列,
数列{an}满足a1=1,a(n+1)=2^(n+1)an/an+2^n(n∈N) (1)证明数列{2^n/an}是等差数列,
数列{an}满足a1=1,a(n+1)=2^(n+1)an/an+2^n(n∈N) (1)证明数列{2^n/an}是等差数列,
同除以2^(n+1)
得a(n+1)/2^(n+1)=an/(an+2^n)
倒过来得2^(n+1)/a(n+1)=1+[(2^n)/an]
[2^(n+1)/a(n+1)]-[(2^n)/an]=1
得证
已知数列{an}满足a(n+1)=an+n,a1=1,则an=
数列{an}满足a1=2,a(n+1)=2an+n+2,求an
数列an满足a1=1,a(n+1)=an/[(2an)+1],求a2010
已知数列{an}满足a(n+1)=an+lg2,a1=1,求an
数列[An]满足a1=2,a(n+1)=3an-2 求an
数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an
数列{an}满足a1=2,a(n+1)=-1/(an+1),则a2010等于
数列{an}满足a1=3,a n+1=2an,则a4等于
已知数列{an}满足a1=1,3a(n+1)+an-7
已知数列an满足a1=1,a(n+1)=an/(3an+1) 求数列通项公式
数列{an)满足an=4a(n-1)+3,a1=0,求数列{an}的通项公式
数列{an}满足a1=1,an=a(n-1)+1/(n2-n),求数列的通项公式
已知数列an满足:a1=1,an-a(n-1)=n n大于等于2 求an
已知数列{an}满足a1=33,a(n+1)-an=2n,则an/n的最小值
已知数列{an}满足a1=33,a(n+1)-an=2n,求an/n的最小值
已知数列an满足a1=100,a(n+1)-an=2n,则(an)/n的最小值为
已知数列an满足a1=2,an=a(n-1)+2n,(n≥2),求an
数列{an}满足a1=1 an+1=2n+1an/an+2n