集合M={x|ax²+ax+1>0}=R,求实数a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:52:03
集合M={x|ax²+ax+1>0}=R,求实数a的取值范围
集合M={x|ax²+ax+1>0}=R,求实数a的取值范围
集合M={x|ax²+ax+1>0}=R,求实数a的取值范围
因为M={x|ax²+ax+1>0}=R
所以ax²+ax+1>0恒成立
所以当a=0时,1>0恒成立
当a>0时,要使ax²+ax+1>0恒成立,则△<0
即a^2-4a<0,即0<a<4
综上所述0≤a<4