关于x的方程x^2-kx+6=0的两个实根均大于1.求实数k的取值范围答案上写k/2>1,f(1)=1-k+6>0 △=k^2-24>=0,解得2√6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:53:15
关于x的方程x^2-kx+6=0的两个实根均大于1.求实数k的取值范围答案上写k/2>1,f(1)=1-k+6>0 △=k^2-24>=0,解得2√6
关于x的方程x^2-kx+6=0的两个实根均大于1.求实数k的取值范围
答案上写k/2>1,f(1)=1-k+6>0 △=k^2-24>=0,解得2√6
关于x的方程x^2-kx+6=0的两个实根均大于1.求实数k的取值范围答案上写k/2>1,f(1)=1-k+6>0 △=k^2-24>=0,解得2√6
设f(x)=x^2-kx+6
因为x的方程x^2-kx+6=0的两个实根均大于1
故函数f(x)与x轴有两交点且都大于1
故函数f(x)的对称轴大于1即k/2>1
由函数f(x)图像可以看出其是一个开口向上且与x轴交点都大于1的二次函数
故由图像得,当x=1时,f(1)>0即1-k+6>0
因有两根,故△=k^2-24≥0
这几个不等式联立即可得到答案
你用韦达定理做也行
首先△=k^2-24≥0
由韦达定理得
x1+x2=k
x1x2=6
因为关于x的方程x^2-kx+6=0的两个实根均大于1
故(x1-1)(x2-1)>0
即x1x2-(x1+x2)+1>0
6-k+1>0
两不等式联立照样可以就出答案
5
关于x的方程x^2-kx+6=0的两个实根均大于1可以等价于x1 -1,x2 -1大于0
由此可得约束条件,即关于k的不等式:
x1+x2>0
x1*x2>0
△>0
(x1-1)(x2-1)>0
利用韦达定理得:k>0
k^2-24>=0<...
全部展开
关于x的方程x^2-kx+6=0的两个实根均大于1可以等价于x1 -1,x2 -1大于0
由此可得约束条件,即关于k的不等式:
x1+x2>0
x1*x2>0
△>0
(x1-1)(x2-1)>0
利用韦达定理得:k>0
k^2-24>=0
6-k+1>0
解得: 2√6<=k<7
我以前遇到这种题目老师都是教这么做的
收起