若m、n是整数,且n²+3m²n²=30m²+517,则3m²n²的值为( )

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:01:39

若m、n是整数,且n²+3m²n²=30m²+517,则3m²n²的值为( )
若m、n是整数,且n²+3m²n²=30m²+517,则3m²n²的值为( )

若m、n是整数,且n²+3m²n²=30m²+517,则3m²n²的值为( )
n²+3m²n²=30m²+517
n^2+3m^2n^2-30m^2=517
n^2+3m^2(n^2-10)=517
n^2-10+3m^2(n^2-10)=517-10
(3m^2+1)(n^2-10)=507=3*13*13
n^2-10=39,3m^2+1=13
n^2=49,m^2=4
3m²n²=3*4*49=588

n²+3m²n²=30m²+517
n²(1+3m²)=30m²+517
n²=(30m²+517)/(1+3m²)
=(30m²+10+507)/(1+3m²)
=10+[507/(1+3m²)]
=10+[3×13×13/(1...

全部展开

n²+3m²n²=30m²+517
n²(1+3m²)=30m²+517
n²=(30m²+517)/(1+3m²)
=(30m²+10+507)/(1+3m²)
=10+[507/(1+3m²)]
=10+[3×13×13/(1+3m²)]由于该式必须为整数
故3×13×13/(1+3m²)必须是整数,即1+3m²必须是3×13×13的约数
3×13×13/(1+3m²)的值只能是1,3,13,39,169,507中的一个
经检验,只有当3×13×13/(1+3m²)=39时
10+[3×13×13/(1+3m²)]=49才是一个完全平方数
此时m²=4,而n²=49
故3m²n²=12×49=588

收起

m=2
n=7
3m²n²的值为(588 )

n^2+3m^2n^2=30m^2+517,
n^2(1+3m^2)=30m^2+517
等式右边为奇数,要等式成立,则等式左边n^2,3m^2+1应均为奇数,n^2为奇数,m^2为偶数。
n^2=(30m^2+517)/(3m^2+1)=(30m^2+10+507)/(3m^2+1)=10+507/(3m^2+1)
507≥3m^2+1
m^2≤12

全部展开

n^2+3m^2n^2=30m^2+517,
n^2(1+3m^2)=30m^2+517
等式右边为奇数,要等式成立,则等式左边n^2,3m^2+1应均为奇数,n^2为奇数,m^2为偶数。
n^2=(30m^2+517)/(3m^2+1)=(30m^2+10+507)/(3m^2+1)=10+507/(3m^2+1)
507≥3m^2+1
m^2≤12
又m为偶数,只有m^2=4时,n^2=49,均为整数。
3m^2n^2=3×4×49=588

收起