- f(x) 在[a,b]连续 在(a,b)上可导,证明:存在ξ,η∈(a,b),使f'(ξ)=(η^2)f'(η)/ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:53:31
- f(x) 在[a,b]连续 在(a,b)上可导,证明:存在ξ,η∈(a,b),使f'(ξ)=(η^2)f'(η)/ab
- f(x) 在[a,b]连续 在(a,b)上可导,证明:存在ξ,η∈(a,b),使f'(ξ)=(η^2)f'(η)/ab
- f(x) 在[a,b]连续 在(a,b)上可导,证明:存在ξ,η∈(a,b),使f'(ξ)=(η^2)f'(η)/ab
对f(x)和1/x用柯西中值定理知存在η∈(a,b),使f'(η)/[-1/ (η^2)]=[f(b)-f(a)]/[1/b-1/a],对分子f(b)-f(a)再利用拉格朗日中值定理即得证
看不懂
化简 待证 结果f'(η)/[-1/ (η^2)]=[f(b)-f(a)]/[1/b-1/a],直接使用柯西中值定理。本题考查的 就是柯西中值定理。
f(x)在a到b上连续,f(x)
设f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,a
设f(x)在[a,b]上连续,且a
f(x)在[a,b]上连续a
若函数f(x)在[a,b]上连续,a
f(x)在(a,b)内连续且a< x1
若f(x)在[a,b]上连续,a
f(x)在[a,b]上连续,a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,a
若函数f(x)在[a,b]上连续,a
f(x)在[a,b]连续且可导,a
若函数f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
如果f(x)在[a,b]上一致连续,证明f(x)在[a,b]上有界
如果f(x)在[a,b]上一致连续,证明f(x)在[a,b]上有界