在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=1/2AB,PH为三角形PAD边上的高         2)若PH=1,AD=根号2,FC=1,求三棱锥E-BCF的体积,3)、证明:EF⊥平面PAB 答得

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:27:07

在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=1/2AB,PH为三角形PAD边上的高         2)若PH=1,AD=根号2,FC=1,求三棱锥E-BCF的体积,3)、证明:EF⊥平面PAB 答得
在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=1/2AB,PH为三角形PAD边上的高         2)若PH=1,AD=根号2,FC=1,求三棱锥E-BCF的体积,3)、证明:EF⊥平面PAB 答得好50分

在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=1/2AB,PH为三角形PAD边上的高         2)若PH=1,AD=根号2,FC=1,求三棱锥E-BCF的体积,3)、证明:EF⊥平面PAB 答得
我只知道第二问
取AB中点M,连结EM、MF,
AM=AB/2,
∵CD//AB,
DF=AB/2=ME,
∴四边形ADFM是平行四边形,(一组对边平行且相等的四边形是平行四边形),
∴MF//AD,
∵ME是△PAB的中位线,
∴EM//PA,
∵PA∩AD=A,EM∩MF=M,
∴平面EMF//平面PAD,
∵AB⊥平面PAD,
∴AB⊥平面EMF,
∵EF∈平面EFM,
∴EF⊥AB,
取PA中点N,连结DN、EN,
则EN是△PBA的中位线,
∴EN//AB,EN=AB/2=AM=DF,
∵CD//AB,
∴EN//DF,EN=DF,
∴四边形FDNE是平行四边形,
∴EF//DN,
∵DP=DA,(已知),DN是AP边上的中线,
∴DN⊥PA,(等腰△三线合一),
∴EF⊥PA,
∵PA∩AB=A,
∴EF⊥平面PAB.

在四棱锥P-ABCD中,平面PAD垂直平面ABCD,AB//DC,三角形PAD是等边三角形如图如图如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=4,AB=2DC=2倍根号5(2)求四棱锥A-PCD的体积 如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面 PAD⊥平面ABCD,PA=PD,E,F分别是...如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面 PAD⊥平面ABCD,PA=PD,E,F分别是PC,BD的中点.证明EF平行于平面PAD 证明AB垂直于 如图,在四棱锥P-ABCD中,平面PAD垂直平面ABCD,AB=AD,角BAD=60°,E,F分别是AP,AD中点,求证1.EF∥平面PCD 2,.平面BEF⊥平面PAD 在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:平面BEF⊥平面PAD 如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB‖CS,△PAD是正△,已知BD=2AD=8 ,AB=2DC=4根号5.(1)设M使PC上任意一点,证明平面MBD⊥平面PAD(2)求四棱锥P-ABCD的体积 如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4根号五1)设M施PC上的一点,证明:平面MBD⊥平面PAD(2)求四棱锥P-ABCD的体积 在四棱锥P—ABCD中,平面PAD⊥平面ABCD,AB‖CD,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4√5(1)设M是PC上的一点,证明平面MBD⊥平面PAD(2)求四棱锥P-ABCD的体积 数学 直线与平面垂直的判定如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8, AB=2DC=4根号五1 设M是PC上一点,证明: 平面MBD⊥平面PAD2 求四棱锥P-ABCD的体积 在四棱锥P-ABCD中,平面PAD垂直平面ABCD,AB平行DC,三角形PAD是等边三角形,已知BD=2AD=8,AB=2DC=4*根号下5.求四棱锥P-ABCD的体积1)设M施PC上的一点,证明:平面MBD⊥平面PAD(2)求四棱锥P-ABCD的体积 在四棱锥P-ABCD底面ABCD为正方形,侧棱PD⊥底面ABCD,E,F分别为AB,PC的中点,求证平面EF∥平面PAD 在四棱柱P-ABCD中,平面PAD⊥平面ABCD,AB‖DC,△PAD是等边三角形 1)设M施PC上的一点,证明:平面MBD⊥平面PAD(2)求四棱锥P-ABCD的体积 数学问题:(有图)在四棱锥P-ABCD中,ABCD是矩形1,(有图)在四棱锥P-ABCD中,ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点 (1)求证:MN//平面PAD (2)如果平面AMN⊥平面PCD,求二面角P-CD-B的大小 答案:45度最 如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD是正三角形,且平面PAD⊥底面ABCD(1)求证:AB⊥平面PAD(2)求直线PC与底面ABCD所成角的大小(3)设AB=1,求点D到平面PBC的距离 如图在四棱锥p-ABCD中.M.N是AB,PC的中点,若ABCD是平行四边形 求证:MN//平面PAD 在四棱锥P-ABCD中,M、N分别是AB、PC的中点,若ABCD是平行四边形,求证:MN平行于平面PAD. 在正四棱锥P-ABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点 求证MN∥平面PAD 在四棱锥P-ABCD中,底面ABCD为矩形,M、N分别是AB、PC的中点.AP=AD 求证:MN//平面PAD 求异面直线MN 如图在四棱锥P一ABcD中,M,N分别是AB,PC的中点,若ABCD是平行四边形,求证`:MN∥平面PAD