已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:01:42
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4
f(x-4)=-f(x)=-f(4-x),故f(x)=f(4-x)
也即y=f(x)关于x=4/2=2对称.
f(x-8)=f(x-4-4)=-f(x-4)=-[-f(x)]=f(x),故函数y=f(x)周期为8.
于是有f(x)=f(4-x)=f(4-x-8)=f(-4-x),于是y=f(x)关于x=-4/2=-2对称.
因f(x)在区间[0,2]上是增函数,根据奇函数的性质,必在区间[-2,0]上也是增函数.
如果f(x)=m>0在区间[0,2]上无解,则必有f(2)
此函数是周期函数,又是奇函数,且在(0,2)上为增函数,四个交点中两个交点的横坐标之和为2×(-6),两个交点的横坐标之和为2×2,
所以x1+x2+x3+x4=-8.
已知定义在R上的奇函数f(x),满足f(x+4)=f(x),则f(8)=
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)=
已知f(x)是定义在R上的奇函数,且满足f(x+2)=-f(x),当0
定义在R上的奇函数f(x)满足f(x+2011)=f(x),则f(2011)=?
已知定义在r上的奇函数f(x)满足f(x+2)=-fx)(求f(6)的值
已知定义在R上的奇函数满足f(x+2)=-f(x),则f(6)=
已知定义在R上的奇函数fx满足f(x+2)=-f(x),则f(2012)=
已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )A、f(-25)
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )A,f(-25)
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数A f(—25)
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),求f(6)的值
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为?
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),求f(6)的值
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为要具体讲解
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(-6)=
周期函数和函数奇偶1.已知F(X)是定义在R上的奇函数,满足F(X+2)=-F(X).当0
已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x+1)=g(x)(x属于R),则属于f(2014)=
定义在R上的偶函数f(x)满足f(x-1) 是奇函数,则f(2009)=?