设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点 2,若fx为R上的单调函数,求a的取值范围设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点2,若fx为R上的单调函数,求a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:53:16
设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点 2,若fx为R上的单调函数,求a的取值范围设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点2,若fx为R上的单调函数,求a的取值范围
设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点 2,若fx为R上的单调函数,求a的取值范围
设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点
2,若fx为R上的单调函数,求a的取值范围
设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点 2,若fx为R上的单调函数,求a的取值范围设f(x)=e^x/1+ax^2,其中a为正实数(1)当a=4/3时,求f(x)的极值点2,若fx为R上的单调函数,求a的取值范围
【考点】利用导数研究函数的极值;函数的单调性与导数的关系.
【专题】计算题;导数的综合应用.
【分析】(1)求导数,确定函数的单调性,即可求得函数的极值点;
(2)若f(x)为R上的单调函数,则f′(x)在R上不变号,由此可得结论.
【点评】本题考查导数知识的运用,考查函数的单调性与极值,考查解不等式,属于中档题.
真乱!!!
经试解后觉得应该是分母没加括号,即函数应该是f(x) =e^x/(1+ax²)吧!
这样,f'(x)=(1+ax²-2ax)e^x/(1+ax²)²。
(1)当a=4/3时,f'(x)=(1/3)(2x-1)(2x-3)e^x/(1+4x²/3)²,
由f'(x)=0,得x=1/2,或x=3/2...
全部展开
真乱!!!
经试解后觉得应该是分母没加括号,即函数应该是f(x) =e^x/(1+ax²)吧!
这样,f'(x)=(1+ax²-2ax)e^x/(1+ax²)²。
(1)当a=4/3时,f'(x)=(1/3)(2x-1)(2x-3)e^x/(1+4x²/3)²,
由f'(x)=0,得x=1/2,或x=3/2,
易知x=1/2为极大值点,x=3/2极小值点。
(2)若f(x)为R上的单调函数,
则在R上,恒有f'(x)=(1+ax²-2ax)e^x/(1+ax²)²≥0或恒有f'(x)=(1+ax²-2ax)e^x/(1+ax²)²≤0,
即在R上,恒有1+ax²-2ax≥0或恒有1+ax²-2ax≤0,
∵a>0,∴必恒有1+ax²-2ax≥0,故△ =4a²-4a≤0,
解得a的取值范围是(0,1]。
收起