若sinθ*cosθ=1/2,则tanθ+cosθ/sinθ的值等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 00:37:07

若sinθ*cosθ=1/2,则tanθ+cosθ/sinθ的值等于
若sinθ*cosθ=1/2,则tanθ+cosθ/sinθ的值等于

若sinθ*cosθ=1/2,则tanθ+cosθ/sinθ的值等于
sinθ*cosθ=1/2
tanθ+cosθ/sinθ
=sinθ/cosθ+cosθ/sinθ
=(sin²θ+cos²θ)/sinθcosθ
=1/sinθcosθ
=1/(1/2)
=2

sinθcosθ=1/2,则:
tanθ+cosθ/sinθ
=[sinθ/cosθ]+[cosθ/sinθ]
=[sin²θ+cos²θ]/[sinθcosθ]
=1/[sinθcosθ]
=2

tanθ+cosθ/sinθ
=sinθ/cosθ+cosθ/sinθ
=(sinθ²+cosθ²)/sinθcosθ
=1/(1/2)
=2


希望能帮你忙,不懂请追问,懂了请采纳,谢谢

tanθ+cosθ/sinθ=sinθ/cosθ+cosθ/sinθ=(sinθ^2+cosθ^2)/(sinθ*cosθ)=1/(1/2)=2

tanθ+cosθ/sinθ
=sinθ/cosθ+cosθ/sinθ
通分
=(sin²θ+cos²θ)/(cosθsinθ)
=1/(1/2)
=2

等于2

你好,解题过程如下:
原式=
=(sinθ/cosθ+cosθ/sinθ)/(sinθcosθ)
=[sin²θ+cos²θ]/(sinθcosθ)
=1/(sinθcosθ)
=2
望好好学习!

tan8+cos8/sin8=sin8/cos8+cos8/sin8=[(sin8)*2+(cos8)*2]/sin8*cos8=1/(1/2)=2