已知抛物线C1:y=x^2 + 2x和C2:y=-x^2 + a,如果直线l同时是C1,C2切线,则称l是C1,C2的公切线,公切线上两切点之间的线段,称为公切线段若C1,C2有两条公切线,证明:相依的两条公切线段互相平分用导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:03:28
已知抛物线C1:y=x^2 + 2x和C2:y=-x^2 + a,如果直线l同时是C1,C2切线,则称l是C1,C2的公切线,公切线上两切点之间的线段,称为公切线段若C1,C2有两条公切线,证明:相依的两条公切线段互相平分用导数
已知抛物线C1:y=x^2 + 2x和C2:y=-x^2 + a,如果直线l同时是C1,C2切线,则称l是C1,C2的公切线,公切线上两切点之间的线段,称为公切线段
若C1,C2有两条公切线,证明:相依的两条公切线段互相平分
用导数求得只有一个斜率,但画图看有两个,为什么只求出来一个?
已知抛物线C1:y=x^2 + 2x和C2:y=-x^2 + a,如果直线l同时是C1,C2切线,则称l是C1,C2的公切线,公切线上两切点之间的线段,称为公切线段若C1,C2有两条公切线,证明:相依的两条公切线段互相平分用导数
原因很简单啊,因为你导数后得到的两条直线求出的公共解根本不是正确的求切线的斜率的方法
两个导数是y`=2x+2和y`=-2x
实际的情况应该是C1上A点(X1,Y1)和C2上的B点(X2,Y2)点斜率相等,这里的x1不一定等于x2的,你直接把方程联立起来解方程是不对的
正确的解法应该是写出直线方程
A点的切线方程 y-Y1=(2X1+2)(x-X1)
B点的切线方程 y-Y2=(-2X2)(x-X2)
它们有公切线,意味着这两个条直线是重合的
也就是各个系数是相等的,2个方程,2个未知数(Y1,Y2分可用X1,X2代替),结果肯定是多解
已知抛物线C1:Y=AX^2+BX+C和C2:Y=X^2-5X+2,如果它们关于点M(3.2)对称,
已知抛物线C1 y=(x-2)2+3,若抛物线C2与抛物线C1关于y轴对称,则抛物线C2解析式为 若抛物线C3与抛物线C1关于x轴对称,则C3的解析式为
已知抛物线C1:y=x^2-2x的图像如图所示,把C1的图像沿y轴翻折,得到抛物线C2的图像已知抛物线C1;y=x^2-2x的图像如图所示,把C1的图像沿y轴翻折,得到抛物线C2的图像,1)若直线y=x+b与抛物线y=ax^2+bx+c(a
已知抛物线C1:y=x^2-2x的图像如图所示,把C1的图像沿y轴翻折,得到抛物线C2的图像已知抛物线C1;y=x^2-2x的图像如图所示,把C1的图像沿y轴翻折,得到抛物线C2的图像,1)若直线y=x+b与抛物线y=ax^2+bx+c(a
已知抛物线C1:y=-(X的二次方)+2mx+1(m外常数,切不等于0)的顶点为A,与y轴交于点C,抛物线C2和C1关于y轴对称,顶点为B.若点P是抛物线C1上的点,使以A,P,B,C为顶点的四边形为菱形,则m为
已知:抛物线C1 C2关于x轴对称,抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,如图,已知:抛物线C1 C2关于x轴对称,:抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,
已知抛物线C1的解析式是 抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.已知抛物线C1的解析式是y=x^2-4x+5 抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.
已知抛物线C1:y^2=4x圆C2:(x-1)^2+y^2=1,过抛物线焦点的直线l交C1于A,D两点,交C2于B.C两点
已知抛物线C1:y=x²-2x-3,抛物线C2与抛物线C1关于X轴对称,若若直线y=x+b(b>0)与抛物线共有三个交点,求b的值
已知抛物线C1:y=-2x²-2x+1,抛物线C2:y=2x²-2x-1,若两抛物线关于原点对称称为“同胞”抛物线(1)试判断C1与C2是否为“同胞”抛物线.(2)已知抛物线C1:y=负二分之一x²-x+三分之二其
已知抛物线C1:y=x*2-2x-3,将C1绕点(0,-2)旋转180°得抛物线C2,求C2解析式
三道函数题1.直角三角形ABC的三个顶点A B C均在抛物线y=x^2 并且斜边AB平行于x轴 若斜边上的高为h,求h的范围2.已知抛物线C1:y=-x^2-3x+4 和 抛物线C2:y=x^2-3x-4 相交于A,B两点,点P在抛物线c1,且位于A,B
已知抛物线c1:y=ax*2-4ax+4a+5(a大于0)的顶点为A,抛物线c2的顶点B在y轴上,且抛物线c1和c2关于p(1,3)成中心对称 设抛物线c2与x的正半轴的交点为C,当三角形ABC为等腰三角形·时,求a的值
如图,抛物线C1:y=x²-4x+b与x轴交于A、B,直线y=1/2x-3分别交x轴、y轴于D点和C点,抛物线C1的顶点E在直线CD上(1)求抛物线C1的解析式;(2)将抛物线C1的顶点沿射线DE的方向平移的抛物线C2,抛
已知抛物线C1:y=2x^2与抛物线C2关于y=-x对称,则抛物线C2的准线方程为
如图,已知抛物线C1:y=2/3x的平方+16/3x+8与抛物线C2关于y轴对称,求抛物线C2的解析式
已知抛物线c1:y=2/3x+16/3x+8与抛物线c2关于y轴对称,求抛物线c2的解析式
已知a+b+c=0,a不等于0,把抛物线y=ax2+bx+c向下平移一个单位,再向左平移五个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式.已知抛物线C1的解析式是y=2x2-4x+5,抛物线C2于C1关于x轴对称