f已知函数 f(x)的定义域为R ,且对 m、n∈R ,恒有 f(m+n)=f(m)+f(n)-1,且f(-1/2)=0时 ,当 x>-1/2时,f(x)>0, 判断函数f(x)的单调性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:43:09
f已知函数 f(x)的定义域为R ,且对 m、n∈R ,恒有 f(m+n)=f(m)+f(n)-1,且f(-1/2)=0时 ,当 x>-1/2时,f(x)>0, 判断函数f(x)的单调性
f已知函数 f(x)的定义域为R ,且对 m、n∈R ,恒有 f(m+n)=f(m)+f(n)-1,
且f(-1/2)=0时 ,当 x>-1/2时,f(x)>0, 判断函数f(x)的单调性
f已知函数 f(x)的定义域为R ,且对 m、n∈R ,恒有 f(m+n)=f(m)+f(n)-1,且f(-1/2)=0时 ,当 x>-1/2时,f(x)>0, 判断函数f(x)的单调性
(1)由题意可知:f(1/2)=f(1/4+1/4)=f(1/4)+f(1/4)-1=2
得f(1/4)=1.5.
f(1/4)=f(1/2-1/4)=f(1/2)+f(-1/4)-1
f(-1/4)=f(1/4)-f(1/2)+1=0.5
f(-1/2)=f(-1/4-1/4)=f(-1/4)+f(-1/4)-1=0
(2)在定义域R中,设a>b,令a=b...
全部展开
(1)由题意可知:f(1/2)=f(1/4+1/4)=f(1/4)+f(1/4)-1=2
得f(1/4)=1.5.
f(1/4)=f(1/2-1/4)=f(1/2)+f(-1/4)-1
f(-1/4)=f(1/4)-f(1/2)+1=0.5
f(-1/2)=f(-1/4-1/4)=f(-1/4)+f(-1/4)-1=0
(2)在定义域R中,设a>b,令a=b+c,此时必定有c>0.由题意可知
f(a)=f(b+c)=f(b)+f(c)-1
则f(a)-f(b)=f(c)-1
又f(c)=f(c-1/2+1/2)=f(c-1/2)+f(1/2)-1=f(c-1/2)+1
因c>0.故c-1/2>-1/2.即有f(c-1/2)>0
所以
f(a)-f(b)=f(c-1/2)+1-1=f(c-1/2)>0
即在x的定义域内,当a>b时,恒有f(a)>f(b)
所以f(x)为单调递增
收起