在△ABC中,A、B、C分别为三角形内角,a、b、c为其所对边,已知2√2*(sin^2A-sin^2C)=(a-b)sinB,△ABC外接圆半径为√2.(1)求角C;(2)求S△ABC的最大值.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:52:14
在△ABC中,A、B、C分别为三角形内角,a、b、c为其所对边,已知2√2*(sin^2A-sin^2C)=(a-b)sinB,△ABC外接圆半径为√2.(1)求角C;(2)求S△ABC的最大值.
在△ABC中,A、B、C分别为三角形内角,a、b、c为其所对边,已知2√2*(sin^2A-sin^2C)=(a-b)sinB,△ABC外接圆半径为√2.
(1)求角C;
(2)求S△ABC的最大值.
在△ABC中,A、B、C分别为三角形内角,a、b、c为其所对边,已知2√2*(sin^2A-sin^2C)=(a-b)sinB,△ABC外接圆半径为√2.(1)求角C;(2)求S△ABC的最大值.
△ABC外接圆半径为√2
R=√2
由正弦定理得
a=2RsinA
sinA=a/2√2
sin^2 A=a^2/8
sin^2 C=c^2/8
sinB=b/2√2
2√2(sinA^2-sinC^2)=(a-b)SinB
2√2(a^2-c^2)/8=(a-b)b/2√2
a^2-c^2=ab-b^2
a^2+b^2-c^2=ab
由余弦定理得
cosC=(a^2+b^2-c^2)/2ab=1/2
C=60
由正弦定理a/sinA=b/sinB=c/sinC=2R
可将2√2(sin^2A-sin^2C)=(a-b)sinB
转化为2√2[(a/2R)^2-(c/2R)^2]=(a-b)b/2R
整理得a^2+b^2-c^2=ab
∴cosC=(a^2+b^2-c^2)/2ab=1/2 ∴∠C为60°
∴∠A+∠B=120°
S=1/2absinC...
全部展开
由正弦定理a/sinA=b/sinB=c/sinC=2R
可将2√2(sin^2A-sin^2C)=(a-b)sinB
转化为2√2[(a/2R)^2-(c/2R)^2]=(a-b)b/2R
整理得a^2+b^2-c^2=ab
∴cosC=(a^2+b^2-c^2)/2ab=1/2 ∴∠C为60°
∴∠A+∠B=120°
S=1/2absinC=4sinAsinB(根据正弦定理)
∠A=120°-∠B,代入化简求最值就行了
收起
(1)△ABC外接圆半径为R=√2.
由正弦定理:a/sinA=b/sinB=c/sinC=2R得
sinA=a/(2√2),sinB=b/(2√2),sinC=c/(2√2)
代入已知条件2√2*(sin^2A-sin^2C)=(a-b)sinB中
化简得 a²+b²-c²=ab
由余弦定理得 cosC=(a²...
全部展开
(1)△ABC外接圆半径为R=√2.
由正弦定理:a/sinA=b/sinB=c/sinC=2R得
sinA=a/(2√2),sinB=b/(2√2),sinC=c/(2√2)
代入已知条件2√2*(sin^2A-sin^2C)=(a-b)sinB中
化简得 a²+b²-c²=ab
由余弦定理得 cosC=(a²+b²-c²)/(2ab)=1/2
∴C=60°.
c=(2R)sinC=(2√2)sin60°=√6.
(2)∵a²+b²≥2ab,即c²+ab ≥2ab,
∴ab≤c²,即ab≤6.
故SΔABC=(1/2)absin 60°≤(3/2)√3.
即SΔABC最大值=(3/2)√3.
收起
△ABC外接圆半径为√2
R=√2
由正弦定理得
a=2RsinA
sinA=a/2√2
sin^2 A=a^2/8
sin^2 C=c^2/8
sinB=b/2√2
2√2(sinA^2-sinC^2)=(a-b)SinB
2√2(a^2-c^2)/8=(a-b)b/2√2
a^2-c^...
全部展开
△ABC外接圆半径为√2
R=√2
由正弦定理得
a=2RsinA
sinA=a/2√2
sin^2 A=a^2/8
sin^2 C=c^2/8
sinB=b/2√2
2√2(sinA^2-sinC^2)=(a-b)SinB
2√2(a^2-c^2)/8=(a-b)b/2√2
a^2-c^2=ab-b^2
a^2+b^2-c^2=ab
由余弦定理得
cosC=(a^2+b^2-c^2)/2ab=1/2
C=60
S=1/2 ab sin60
正弦定理得
S=1/2*2R*2R sinA sinB sin60
S=2*根号3 sinA sin(120-A)
对sinA sin(120-A)求导得-cosA cos(120-A)
令上式等于0得A=90或A=30.
当A=90或30时有最大值,易知两解等价
S max=3
收起