(1-1/2)*(1-1/3)*(1-1/4)*···*(1-1/2004)*(1-1/2005)=多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:04:58
(1-1/2)*(1-1/3)*(1-1/4)*···*(1-1/2004)*(1-1/2005)=多少
(1-1/2)*(1-1/3)*(1-1/4)*···*(1-1/2004)*(1-1/2005)=多少
(1-1/2)*(1-1/3)*(1-1/4)*···*(1-1/2004)*(1-1/2005)=多少
=(1-1/2)*(1-1/3)*(1-1/4)*···*(1-1/2004)*(1-1/2005)
=(1/2)*(2/3)*(3/4)*···*(2003/2004)*(2004/2005)
=1/2005
第一步先将括号里面相减...
因为1/2的分母可以和2/3的分子约去,2/3的分母也可以和3/4的分子互约...
如此类推,最后2003/2004的分母也可以和2004/2005的分子约去,剩下1/2005以外其余分子分母都为1,所以答案为1/2005.
200*(1-1/2)*(1-1/3)*(1-1/4)*.*(1-1/100)
(1-2/1)*(1-3/1)*(1-4/1)*.*(1-2007/1)*(1-2008/1)
(1/2014-1)(1/2013-1)(1-2012-1)...(1/3-1)(1/2-1)
(1/2+1/3+...+1/2004)(1+1/2+1/3+...+1/2003)-(1+1/2+1/3+...+1/2004)(1/2+1/3+...+1/2003)
2000*(1-1/2*)*(1-1/3)*...*(1-1999)*(1-1/2000)
2000*(1-1/2)*(1-1/3)*.*(1-1/1999)*(1-1/2000)
(1-1/2004)(1-2003)(1-2002)…(1-1/3)(1-1/2)
(1-1/2)(1-1/3)(1-1/4).(1-1/100)
计算:(-1)-[1-(1-1/2*1/3)]*6
计算!(-1)-[1-(1-1/2*1/3)]*6
(1+2/1)(1+4/1)(1+6/1).(1+10/)(1-3/1)(1—5/1).(1-9/1)
巧算(奥数题)问:(1+1/2)×(1-1/2)×(1+1/3)×(1-1/3)×...(1+1/99)×(1-1/99)
计算 ( 1+1/2)*(1-1/3)*(1+1/4)*(1-1/5)*.*(1+1/1000)*(1-1/1001)
(1+1/2)*(1-1/2)*(1+1/3)*(1-1/3)*...(1+1/2006)*(1-1/2006)怎么简算呀?
(1+1/2)*(1-1/2)*(1+1/3)*(1-1/3)*……*(1+1/99)*(1-1/99)
(1+1/2)×(1-1/2)×(1+1/3)×(1-1/3)×...×(1+1/99)×(1-1/99)=?
(1+1/2)×(1-1/2)×(1+1/3)×(1-1/3)×……×(1+1/99)×(1-1/99)=
(1+1/2)*(1-1/2)*(1+1/3)*(1-1/3)*.(1+1/9)*(1-1/9)