如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45度.则有结论EF=BE+FD成立;(1)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 05:35:54

如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45度.则有结论EF=BE+FD成立;(1)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然
如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45度.则有结论EF=BE+FD成立;
(1)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明;不成立,请说明理由.
(2)若将(1)中的条件改为:在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.

如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45度.则有结论EF=BE+FD成立;(1)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然
(1)结论仍然成立.延长CB到G,使BG=FD,根据已知条件容易证明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF= ∠BAD,所以得到∠DAF+∠BAE=∠EAF,进一步得到∠EAF=∠GAE,现在可以证明△AEF≌△AEG,然后根据全等三角形的性质就可以证明结论成立;
(2)结论不成立,应为EF=BE-DF,如图在CB上截取BG=FD,由于∠B+∠ADC=180°,∠ADF+∠ADC=180°,可以得到∠B=∠ADF,再利用已知条件可以证明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF= ∠BAD,所以得到∠EAF=∠GAE,现在可以证明△AEF≌△AEG,再根据全等三角形的性质就可以证明EF=EG=EB-BG=EB-DF.(1)延长CB到G,使BG=FD,
∵∠ABG=∠D=90°,AB=AD,
∴△ABG≌△ADF,
∴∠BAG=∠DAF,AG=AF,
∵∠EAF= ∠BAD,
∴∠DAF+∠BAE=∠EAF,
∴∠EAF=∠GAE,
∴△AEF≌△AEG,
∴EF=EG=EB+BG=EB+DF.
(2)结论不成立,应为EF=BE-DF,
在CB上截取BG=FD,(如图)
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°
,∴∠B=∠ADF,
∵AB=AD,
∴△ABG≌△ADF,
∴∠BAG=∠DAF,AG=AF,
∵∠EAF= ∠BAD,
∴∠EAF=∠GAE,
∴△AEF≌△AEG,
∴EF=EG=EB-BG=EB-DF.

(1)结论仍然成立.延长CB到G,使BG=FD,根据已知条件容易证明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF= ∠BAD,所以得到∠DAF+∠BAE=∠EAF,进一步得到∠EAF=∠GAE,现在可以证明△AEF≌△AEG,然后根据全等三角形的性质就可以证明结论成立;
(2)结论不成立,应为EF=BE-DF,如图在CB上截取BG=FD,由于∠B+∠ADC=1...

全部展开

(1)结论仍然成立.延长CB到G,使BG=FD,根据已知条件容易证明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF= ∠BAD,所以得到∠DAF+∠BAE=∠EAF,进一步得到∠EAF=∠GAE,现在可以证明△AEF≌△AEG,然后根据全等三角形的性质就可以证明结论成立;
(2)结论不成立,应为EF=BE-DF,如图在CB上截取BG=FD,由于∠B+∠ADC=180°,∠ADF+∠ADC=180°,可以得到∠B=∠ADF,再利用已知条件可以证明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF= ∠BAD,所以得到∠EAF=∠GAE,现在可以证明△AEF≌△AEG,再根据全等三角形的性质就可以证明EF=EG=EB-BG=EB-DF.(1)延长CB到G,使BG=FD,
∵∠ABG=∠D=90°,AB=AD,
∴△ABG≌△ADF,
∴∠BAG=∠DAF,AG=AF,
∵∠EAF= ∠BAD,
∴∠DAF+∠BAE=∠EAF,
∴∠EAF=∠GAE,
∴△AEF≌△AEG,
∴EF=EG=EB+BG=EB+DF.
(2)结论不成立,应为EF=BE-DF,
在CB上截取BG=FD,(如图)
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°
,∴∠B=∠ADF,
∵AB=AD,
∴△ABG≌△ADF,
∴∠BAG=∠DAF,AG=AF,
∵∠EAF= ∠BAD,
∴∠EAF=∠GAE,
∴△AEF≌△AEG,
∴EF=EG=EB-BG=EB-DF.

收起

(1)延长CB到G,使BG=FD,
∵∠ABG=∠D=90°,AB=AD,
∴△ABG≌△ADF,
∴∠BAG=∠DAF,AG=AF,
∵∠EAF=12∠BAD,
∴∠DAF+∠BAE=∠EAF,
∴∠EAF=∠GAE,
∴△AEF≌△AEG,
∴EF=EG=EB+BG=EB+DF.
(2)结论不成立,应为EF=BE-DF,<...

全部展开

(1)延长CB到G,使BG=FD,
∵∠ABG=∠D=90°,AB=AD,
∴△ABG≌△ADF,
∴∠BAG=∠DAF,AG=AF,
∵∠EAF=12∠BAD,
∴∠DAF+∠BAE=∠EAF,
∴∠EAF=∠GAE,
∴△AEF≌△AEG,
∴EF=EG=EB+BG=EB+DF.
(2)结论不成立,应为EF=BE-DF,
在CB上截取BG=FD,(如图)
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°
,∴∠B=∠ADF,
∵AB=AD,
∴△ABG≌△ADF,
∴∠BAG=∠DAF,AG=AF,
∵∠EAF=12∠BAD,
∴∠EAF=∠GAE,
∴△AEF≌△AEG,
∴EF=EG=EB-BG=EB-DF.

收起

如图1 在正方形abcd中 e f分别是 如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE. 如图,在正方形ABCD中,E,F分别是AD,DC的中点,BF EC交于点M 1、求证BF⊥CE2、 若AM=6 求正方形ABCD的周长 如图,在正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点 如图,在四面体ABCD中,E,F分别是棱AD 如图,在边长为1的正方形ABCD中,E、F分别是AB、AD上的点...在边长为1的正方形ABCD中,E、F分别是AB、AD上的点,且AE+EF+FA=2,求ECF的度数 如图,正方形ABCD中,点E,F分别是BC,DC边上的点,且AE垂直于EF 如图,已知正方形ABCD中,边BC,CD的中点分别是E,F,求证:AE⊥DF 如图,在正方形ABCD中,E、F分别是AB、AD上的点,且AE=AF.求证:CE=CF 已知:如图,在正方形ABCD中E,F分别是AB,AD上的点,且AE=AF.求证:CE=CF 如图,在正方形ABCD中,E、F分别是AD、DC的中点,AF、BE交于点G,连结CG,试说明:△CGB是等腰三角形. 如图,已知在正方形abcd中,e,f分别是ab.bc上的点,若有ae+cf=ef,求∠edf的度数 如图,在正方形ABCD中,E、F分别是AD、DC的中点,AF、BE交于点G,连结CG,试说明:△CGB是等腰三角形 如图,已知,在正方形ABCD中,E、F分别是AB、BC上的点,若有AE+CF=EF,求:∠EDF的度数. 如图,已知,在正方形ABCD中,E、F分别是AB、BC上的点,若有AE+CF=EF,求:∠EDF的度数. 如图,在正方形ABCD中,E、F分别是BC、AB的中点,DE、CF相交于M.求证:AD=AM 如图,在正方形ABCD中,E、F分别是AD、DC上的点,且AE+CF=EF,则∠EBF=?度 如图,在正方形abcd—a1b1c1d1中,e.f分别是ad.cd的中点求证ef垂直于bd1