已知函数f(x)=cos(x+x/6)-sin(x-2π/3)+sinx+a的最大值为1.求常数a的值?求使f(x)≥0成立的x的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:36:43

已知函数f(x)=cos(x+x/6)-sin(x-2π/3)+sinx+a的最大值为1.求常数a的值?求使f(x)≥0成立的x的取值范围
已知函数f(x)=cos(x+x/6)-sin(x-2π/3)+sinx+a的最大值为1.求常数a的值?求使f(x)≥0成立的x的取值范围

已知函数f(x)=cos(x+x/6)-sin(x-2π/3)+sinx+a的最大值为1.求常数a的值?求使f(x)≥0成立的x的取值范围
f(x) = cos(x+π/6)-sin(x-2π/3)+sinx+a
= cos(x+π/6)-{-sin(π+x-2π/3)} + sinx + a
= cos(x+π/6)+sin(x+π/3)} + sinx + a
= cos(x+π/6)+cos{π/2-(x+π/3)} + sinx + a
= cos(x+π/6)+cos{π/6-x} + sinx + a
= cos(x+π/6)+cos{x-π/6} + sinx + a
= cosxcosπ/6-sinxsinπ/6 + cosxcosπ/6+sinxsinπ/6 + sinx + a
= 2cosxcosπ/6 + sinx + a
= 2(cosxcosπ/6 + sinxsinπ/6) + a
= 2cos(x-π/6)+a
-2+a≤2cos(x-π/6)+a≤2+a
2+a=1
a=-1

cos(x+x/6)你确定不是cos(x+π/6)?

f(x)=cos(x+x/6)-sin(x-2π/3)+sinx+a
=√3/2cosx-sinx/2+sinx/2+√3/2cosx+sinx+a
=√3cosx+sinx+a
=2sin(x+∏/3)+a
最大值2+a=1
a=-1
f(x)=2sin(x+∏/3)-1≥0
sin(x+∏/3)≥1/2
∏/6+2k∏≤x+∏/3≤5∏/6+2k∏
-∏/6+2k∏≤x≤∏/2+2k∏