1、f(x)是定义在(0,+∞)的增函数,f(2)=1,且f(xy)=f(x)+f(y),求满足不等式f(x)+f(x-3)小于等于2的x的取值范围2.f(x)是定义在(+无穷大,-无穷大)上的不恒为零的函数,且对于定义域中任意X,Y,f(x)都满

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:39:36

1、f(x)是定义在(0,+∞)的增函数,f(2)=1,且f(xy)=f(x)+f(y),求满足不等式f(x)+f(x-3)小于等于2的x的取值范围2.f(x)是定义在(+无穷大,-无穷大)上的不恒为零的函数,且对于定义域中任意X,Y,f(x)都满
1、f(x)是定义在(0,+∞)的增函数,f(2)=1,且f(xy)=f(x)+f(y),求满足不等式f(x)+f(x-3)小于等于2的x的取值范围
2.f(x)是定义在(+无穷大,-无穷大)上的不恒为零的函数,且对于定义域中任意X,Y,f(x)都满足f(x*y)=y*f(x)+x*f(y)判断其奇偶性

1、f(x)是定义在(0,+∞)的增函数,f(2)=1,且f(xy)=f(x)+f(y),求满足不等式f(x)+f(x-3)小于等于2的x的取值范围2.f(x)是定义在(+无穷大,-无穷大)上的不恒为零的函数,且对于定义域中任意X,Y,f(x)都满
我在老师讲抽象函数时歇了两天,现在刚弄明白,让我给你讲讲这两道题.
第1题,由于f(2)=1,且f(xy)=f(x)+f(y),所以可以通过赋值、已知的恒等式和函数的单调性求解.具体过程如下:
令x=2,y=2
∴f(2×2)=f(2)+f(2)
∴f(4)=2
∵f(x)+f(x+3)≤2
∴f[x(x+3)]≤f(4)
∴f[x(x+3)]-f(4)≤0
∵f(x)是定义在(0,+∞)上的增函数
所以0<x(x+3)≤4
(大于0是由定义域得来,小于或等于4是根据单调性得来.)
画出一个二次函数图像解不等式即可,结果应是[-4,3)∪(0,1]
第2题要判断一个函数的奇偶性,就要用奇偶性的定义,通过赋值,令自变量互为相反数即可.具体过程如下:
∵f(x)的定义域为(-∞,+∞)
∴定义域关于原点对称
令x=1,y=1
∴f(1)=f(1)+f(1)
∴f(1)=0
令x=-1,y=-1
∴f(1)=-f(-1)-f(-1)
∴f(-1)=0
令x=-1
∴f(-y)=yf(-1)-f(y)
∵f(-1)=0
∴f(-y)=-f(y)
∵f(x)在(-∞,+∞)上不恒为0
所以f(x)在(-∞,+∞)上是奇函数.
所有抽象函数的问题只要巧妙赋值,都能解决.

直接交流,帮你做,好发图片

函数f(x)是定义在(0,+∞)上的函数,f(2)=0;x>1时,f(x) 定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1) 已知f(x)是定义在(0,+∞)上的增函数,集合A={x|(x-2)/(x-1) 设函数f(x)是定义在(-∞,+∞)上的增函数,若不等式f(1-ax-x^2) 函数f(x)是定义在(0,正无穷大)上的增函数,且f(x/y)=f(x)-f(y),求f(1)的值. 已知函数f(x)是定义在(0,+∞)上的减函数,fx(xy)=f(x)+f(y) ,f(1/3)=1.f(x) f(x)是定义在(0,+∞)上的增函数 (x/y)=f(x)-f(y),证明f(xy)=f(x)+f(y) f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y)求f(1)的值若f(6)=1,解不等式f(x+3)-f(1/x) 一道简单的题:f(x)是定义在(0,+∞)上的增函数,求不等式f(x)>f(2x-1)的解集 已知f(x)是定义在(0,+∞)上的增函数,f(2)=1,且对任意实数x,y满足f(x·y)=f(x)+f(y),解不等式f(x)+f(x-2) 已知函数f(x)是定义在(0,+无穷大)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1,……已知函数f(x)是定义在(0,+无穷大)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1,解不等式f(x)-f(x-2)>3 f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y) (1) 求f(1)的值.(2)若f(6)=1,解不等式f(x+3)-f(2) f(x)是定义在(0,+∞)上的递减函数f(x)是定义在(0,+∞)上的递减函数,且f(x) f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证f(3)=8;(2)解不等式f(x)-f(x-2)>3 若f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),则不等式f(x+6)-f(1/x) <2f(4)的解集是( ) 设函数f(x)是定义在R上的增函数,令F(x)=f(x)-f(2-x) (1) 求证:F(x)是R上的增函数; (2) 若F(x1)+f(x2)设函数f(x)是定义在R上的增函数,令F(x)=f(x)-f(2-x)(1) 求证:F(x)是R上的增函数;(2) 若F(x1)+f(x2)>0, f(x)是定义在(0,+∞)上的减函数,且f(x) 已知f(x)是定义在[-1,1]上的增函数,且f(x-1)