函数f(x)=log1/2(X-1)+根号2-x的值域为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:21:50
函数f(x)=log1/2(X-1)+根号2-x的值域为
函数f(x)=log1/2(X-1)+根号2-x的值域为
函数f(x)=log1/2(X-1)+根号2-x的值域为
由题意
x-1>0
2-x≥0
∴1<x≤2
函数在定义域内递减
∴f(x)≥log1/2(2-1)+根号2-2
即f(x)≥0
值域为[0,+∞)
你这里这的log1/2(x-1)是不是些错了,log后应包括底数和真数才对啊
log1/2(X-1)的定义域为 X-1>0
即X>1
√(2-x)的定义域2-x≥0
即x≤2
所以f(x)的定义域为1<x≤2
因为在定义域上log1/2(X-1)和√(2-x)均是减函数
所以当x=2是函数取最小值
fmin=f(2)=log1/2(2-1)+√(2-2)=0
而当x趋近于1时log1/2...
全部展开
log1/2(X-1)的定义域为 X-1>0
即X>1
√(2-x)的定义域2-x≥0
即x≤2
所以f(x)的定义域为1<x≤2
因为在定义域上log1/2(X-1)和√(2-x)均是减函数
所以当x=2是函数取最小值
fmin=f(2)=log1/2(2-1)+√(2-2)=0
而当x趋近于1时log1/2(X-1)可取无穷大
所以f(x)的值域为f(x)≥0
收起