在△ABC中,角A、B、C所对的边分别是a、b、c,且a2+c2-b2=1/2ac.(1)求sin2(A+C)/2+cos2B;(2)若b=2,求△ABC面积的最大值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:07:46

在△ABC中,角A、B、C所对的边分别是a、b、c,且a2+c2-b2=1/2ac.(1)求sin2(A+C)/2+cos2B;(2)若b=2,求△ABC面积的最大值.
在△ABC中,角A、B、C所对的边分别是a、b、c,且a2+c2-b2=1/2ac.
(1)求sin2(A+C)/2+cos2B;
(2)若b=2,求△ABC面积的最大值.

在△ABC中,角A、B、C所对的边分别是a、b、c,且a2+c2-b2=1/2ac.(1)求sin2(A+C)/2+cos2B;(2)若b=2,求△ABC面积的最大值.
1)∵a^2+c^2-b^2=1/2ac,由余弦定理可知:CosB=1/4,
∴Cos2B=2CosB^2-1=-7/8
∵π-B=A+C,00
∴a^2+c^2-4=1/2ac,(a+c)^2=4,a+c=2,c=2-a,a∈(0,2)
∴S△ABC=1/2acSinB=√15/8 *ac=-√15/8 *a^2+√15/4 *a
∵顶点公式(-b/2a,4ac-b^2/4a),
∴当a=1时,S△ABCmax=√15/8

在三角形ABC中,角A,B,C所对的边分别是abc,且cosA=4/5 在三角形abc中,角A,B,C所对的边分别是a,b,c,若a=csinA,则(a+b)/c的最大值 在△ABC中,角A,B,C的对边分别是a,b,c,命题p:(a+b) 在三角形ABC中,a、b、c分别是角A、B、C所对的边,且sinA+cosA=c/b ,求 角B 在三角形ABC中,已知角ABC所对的边分别是abc,且cosB/cosA=b/2a+c,求角B的大小 △ABC中,角A、B、C所对的边分别是a、b、c,证明a²-b²/c²=sin(A-B)/sinC 在三角形ABC中,角A,B,C,所对的边分别是a,b,c.若(根号2b-c)=acosC,则cosA=? 在三角形ABC中,角A,B,C所对的边分别是a,b,c.若a*cosA=b*sinB,则sinAcosA+cosB^2=? 在三角形ABC中,角A,B,C所对的边分别是a,b,c.若a*cosA=b*sinB,则sinAcosA+cosB^2=? 在△ABC中,角A,B,C的对边分别是a,b,c那么acosB+bcosA等于 在△ABC中,角A、B、C所对的边分别是a、b、c,且(a+b+c)(b+c-a)=3bc若2b=3c,求tanC的值 在△ABC中,角A,B,C所对的边分别是a,b,c,若角A,B,C依次成等差数列,且a=1,b=根号3,则S△ABC=? 在三角形ABC中,abc分别是角ABC所对的边有(2b—c)cosA=acosC求角A的大小 在三角形ABC中,角A,B,C所对的边分别是a,b,c,已知sinC+cosC=1-sin(C/2),求sinC 在三角形ABC中,a、b、c分别是角A、B、C所对的边,且acosB+bcosA=1 (1)求c 在△ABC中,角A,B,C所对的边分别是a,b,c,若a=1,∠B=45°,△ABC的面积S=2求△ABC外接圆直径 在△ABC中,a,b,c分别是内角A,B,C所对的边,且满足sinA+cosA=2,求A的大小急. △ABC中,已知角A,B,C所对的边分别是a,b,c且b^2=a*c 求(1)0