在三角形ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC.1.求角B的大小 2、若三角形ABC的面积为四分之三倍根号三,且b=根号三,求a+c的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:21:46
在三角形ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC.1.求角B的大小 2、若三角形ABC的面积为四分之三倍根号三,且b=根号三,求a+c的值
在三角形ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC.1.求角B的大小 2、若三角形ABC的面积为四分之三倍根号三,且b=根号三,求a+c的值
在三角形ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC.1.求角B的大小 2、若三角形ABC的面积为四分之三倍根号三,且b=根号三,求a+c的值
1.∵(2a-c)cosB=bcosC
∴(2sinA-sinC)cosB=sinBcosC
∴2sinAcosB=sinBcosC+cosBsinC
即2sinAcosB=sin(B+C)=sinA
∵sinA≠0,∴cosB=1/2,∴B=π/3
2.由余弦定理得到b²=3=a²+c²-2accos(π/3)=(a+c)²-3ac
又由面积公式S=1/2acsinB得,3√3/4=1/2acsin(π/3),解得ac=3
∴3=(a+c)²-9,∴a+c=2√3
1、过A做AD垂直BC于D,设BD=X,DC=y。则cosB=x/c cosC=y/b,因为x+y=a,所以ccosB+bcosC=a
因为(2a-c)cosB=bcosC,所以ccosB+(2a-c)cosB=a。整理得cosB=1/2,所以B=60°。
2、因三角形的面积为1/2aAD 而AD=csinB,所以ac=3。因为(2a-c)cosB=bcosC ,cosC=y/...
全部展开
1、过A做AD垂直BC于D,设BD=X,DC=y。则cosB=x/c cosC=y/b,因为x+y=a,所以ccosB+bcosC=a
因为(2a-c)cosB=bcosC,所以ccosB+(2a-c)cosB=a。整理得cosB=1/2,所以B=60°。
2、因三角形的面积为1/2aAD 而AD=csinB,所以ac=3。因为(2a-c)cosB=bcosC ,cosC=y/b
所以a=c/2,所以c=根号6 ,所以a+c=2分之3倍根号6。
收起