已知椭圆c:x2/a2+y2/b2=1(a大于b大于0)的两个焦点分别为f1,f2,斜率为k的直线l过左焦点f1且于椭圆的交点为a,b.与y轴交点为c,又b为线段cf1的中点,若绝对值k小于等于2分之根号14,求离心率e的范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:26:55

已知椭圆c:x2/a2+y2/b2=1(a大于b大于0)的两个焦点分别为f1,f2,斜率为k的直线l过左焦点f1且于椭圆的交点为a,b.与y轴交点为c,又b为线段cf1的中点,若绝对值k小于等于2分之根号14,求离心率e的范围
已知椭圆c:x2/a2+y2/b2=1(a大于b大于0)的两个焦点分别为f1,f2,斜率为k的直线l过左焦点f1且于椭圆的交点为
a,b.与y轴交点为c,又b为线段cf1的中点,若绝对值k小于等于2分之根号14,求离心率e的范围

已知椭圆c:x2/a2+y2/b2=1(a大于b大于0)的两个焦点分别为f1,f2,斜率为k的直线l过左焦点f1且于椭圆的交点为a,b.与y轴交点为c,又b为线段cf1的中点,若绝对值k小于等于2分之根号14,求离心率e的范围
解析几何的基本题
过F1(-c,0),设y=k(x+c)(k≠0),将x=0代入,y=kc,所以C(0,kc)
B是F1C中点,B(-c/2,kc/2),B在椭圆上,将B代入椭圆方程
c^2/4a^2 + k^2c^2/4b^2 = 1通分
b^2 c^2+k^2 a^2 c^2=4a^2 b^2
(a^2-c^2) c^2+k^2 a^2 c^2=4a^2 (a^2-c^2)
k^2 a^2 c^2=4a^4+c^4-5a^2 c^2
k^2=(4a^4+c^4-5a^2 c^2) / (a^2 c^2) e=c/a
k^2=4/e^2 + e^2 -5
k^2≤ 7/2
4/e^2 + e^2 -5≤ 7/2
解不等式即可
e∈[√2/2,1)

已知椭圆C1:x2 a2 + y2 b2 =1(a>b>0)椭圆C2 已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作 急已知双曲线x2/a2-y2/b2=1的离心率为根号6/2,椭圆x2/a2+y2/b2=1的离心率为 已知椭圆x2/a2+y2/b2=1,其离心率为根号3/2,则双曲线x2/a2-y2/b2=1的渐近线方程为 已知椭圆C:x2/a2+y2/b2=1与椭圆x2/4+y2/8=1有相同的离心率,则椭圆C的方程可能是() 已知椭圆C:x2/a2+y2/b2=1(a>0,b>0)过点(1,2/3),且离心率为1/2.求椭圆的方程 已知椭圆C:y2/a2+ x2/b2=1,经过点(1/2,根号3),一个焦点是F(0,-根号3)求椭圆方程 已知椭圆C:x2/a2+y2/b2=1与椭圆x2/4+y2/8=1有相同的离心率,则椭圆C的方程可能是()A、X2/8+Y2/4=m2(m不等于0)B、X2/16+Y2/64=1C、X2/8+Y2/2=1D、以上都不可能麻烦简单说明 已知椭圆x2/a2+y2/b2的离心率为根号2/2,其焦点在圆x2+y2=1球椭圆方程 已知椭圆x2/a2+y2/b2=1与椭圆x2/25+y2/16=1有相同的长轴椭圆x2/a2+y2/b2=1的短轴长与椭圆y2/21+x2/9=1的短轴长相等,则求a2和b2的值? 已知C为椭圆X2/A2+Y2/B2=1(A>B>0)的半焦距,则(B+C)/A的取值范围 已知c是椭圆x2/a2+y2/b2=1(a>b>0)的半焦距,则(b+c)/a的取值范围是? 已知半椭圆x2/b2+y2/a2=1(y>=0)和半圆x2+y2=b2(yb>0,如图,半椭圆x2/b2+y2/a2=1...已知半椭圆x2/b2+y2/a2=1(y>=0)和半圆x2+y2=b2(yb>0,如图,半椭圆x2/b2+y2/a2=1(y>=0)内切于矩形ABCD,且CD交于y轴于点G,点P是半圆x2+y2=b2(y>=0 已知双曲线的顶点与焦点分别是椭圆的y2/a2+x2/b2=1(a>b>c)焦点与顶点,若双曲线的两已知双曲线的顶点与焦点分别是椭圆的y2/a2+x2/b2=1(a>b>c)焦点与顶点,若双曲线的两条渐进性与椭圆的交点构成的 已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为根号2/2,A1,A2是椭圆的左右顶点,B1B 2已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为根号2/2,A1,A2是椭圆的左右顶点,B1B2是椭圆的上下顶点,四边形A1A2B1B2的面积为16根号2 已知双曲线C:x2/a2-y2/b2=1(a>,b>)与椭圆x2/18+y2/14=1有共同的焦点,点A(3,根号7)在双曲线C上.求(1)双...已知双曲线C:x2/a2-y2/b2=1(a>,b>)与椭圆x2/18+y2/14=1有共同的焦点,点A(3,根号7)在双曲线C上.求(1)双曲线C 已知F1(-c,0),F2(c,0)是椭圆x2/a2+y2/b2=1的两个焦点,p为椭圆上的点且向量pf1*pf2=c2 .求椭圆离心率的范围 已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为2/3,且该椭圆上的点到右焦点的最大距离为5.1)求椭圆C方程