如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:11:11

如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2
如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2

如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2
证明:延长FD,取点G,使DG=FD,连接EG
∵D是AB的中点
∴AD=BD
∵DG=FD,∠ADG=∠BDF
∴△ADG全等于△BDF
∴AG=BF,∠DAG=∠B
∵∠C=90
∴∠CAB+∠B=90
∴∠CAB+∠DAG=90
∴∠EAG=90
∴EG²=AE²+AG²
∴EG²=AE²+BF²
∵DE⊥DF,DF=DG
∴ED垂直平分GF
∴EF=EG
∴EF²=AE²+BF²

作DG⊥BC于G,DH⊥AC于H
设AB=c,AC=b,BC=a,GF=x,
则:CD=AD=BD=c/2
DH=BG=CG=a/2,DG=AH=CH=b/2
△DEH~△DFG,EH=DH*FG/DG=a/2*x/(b/2)=ax/b
AE^2+BF^2=(AH-EH)^2+(BG+GF)^2=(b/2-ax/b)^2+(a/2+x)^2=b^2+a^2x...

全部展开

作DG⊥BC于G,DH⊥AC于H
设AB=c,AC=b,BC=a,GF=x,
则:CD=AD=BD=c/2
DH=BG=CG=a/2,DG=AH=CH=b/2
△DEH~△DFG,EH=DH*FG/DG=a/2*x/(b/2)=ax/b
AE^2+BF^2=(AH-EH)^2+(BG+GF)^2=(b/2-ax/b)^2+(a/2+x)^2=b^2+a^2x^2/b^2+a^2/4+x^2
EF^2=CE^2+CF^2=(CH+EH)^2+(CG-GF)^2=(b/2+ax/b)^2+(a/2-x)^2=b^2+a^2x^2/b^2+a^2/4+x^2
所以,EF^2=AE^2+BF^2

收起

如图Rt△ABC中,∠C=90°∠A=30°点D,E分别在AB,AC上且DE⊥AB 如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB的距离是 如图,在Rt△ABC中,若∠C=90°,CD⊥AB于D,AB=13,CD=6,则AC+BC等于? 已知:如图,在Rt△ABC中,∠C=90°,D是AC的中点.求证:AB²+3BC²=4BD² 如图,在Rt△中,∠C=90°,BC=5,圆O内切于Rt△ABC的三边,切点分别为D.E.F,若圆O半径为2,求△ABC的周长 如图,在Rt△ABC中,∠C等于90°,图中有三个正方形,证明a=b+c? 如图,在Rt△ABC中,角C=90° 如图,在Rt△ABC中,∠ACB=90°,D,E是AB上的点 如图,在Rt△ABC中,∠C=90°,AC=BC,D为AC的中点,求sin∠ABD如图,在rt△abc中,∠c=90°,ac=bc,d为ac的中点,求sin∠abd 如图,在Rt△ABC中,∠C=90°,sinA=0.7,求cosA、 tanA的值. 如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值 如图,在Rt△ABC中,∠C=90°,AB=5,S△ABC=6,求△ABC的内切圆半径r 如图,在Rt△ABC和Rt△BAD中,∠C=∠D=90°,AD平分∠CAB,BC平分∠ABD,AD、BC相交于点O,求证.OC=OD 如图 在rt三角形abc中 角c等于90度,沿过b点的一条直线be折叠这个三角形已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合。当∠A为多少时, 已知,如图,在Rt△ABC中,∠C=90°,AC=根号3点D在BC上,且BD=2AD,∠ADC=60°,求△ABC周长(结果保留根号) 如图,在Rt三角形ABC中,∠C=90°,点D是AC上一点,DE垂直AB于点E,且DE=DC 如图,Rt△ABC中,∠C=90°,BC=5,⊙O内切Rt△ABC的三边AB.BC.CA于D.E.F,半径r=2.求△ABC的周长 如图,在Rt△ABC中,∠C=90°.BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB于点E.如图,在Rt△ABC中,∠C=90º.BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB于点E.(1)求证:AC是△DBE外接圆的切线;(2)若AD=6,A