如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:11:11
如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2
如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2
如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+BF^2
证明:延长FD,取点G,使DG=FD,连接EG
∵D是AB的中点
∴AD=BD
∵DG=FD,∠ADG=∠BDF
∴△ADG全等于△BDF
∴AG=BF,∠DAG=∠B
∵∠C=90
∴∠CAB+∠B=90
∴∠CAB+∠DAG=90
∴∠EAG=90
∴EG²=AE²+AG²
∴EG²=AE²+BF²
∵DE⊥DF,DF=DG
∴ED垂直平分GF
∴EF=EG
∴EF²=AE²+BF²
作DG⊥BC于G,DH⊥AC于H
设AB=c,AC=b,BC=a,GF=x,
则:CD=AD=BD=c/2
DH=BG=CG=a/2,DG=AH=CH=b/2
△DEH~△DFG,EH=DH*FG/DG=a/2*x/(b/2)=ax/b
AE^2+BF^2=(AH-EH)^2+(BG+GF)^2=(b/2-ax/b)^2+(a/2+x)^2=b^2+a^2x...
全部展开
作DG⊥BC于G,DH⊥AC于H
设AB=c,AC=b,BC=a,GF=x,
则:CD=AD=BD=c/2
DH=BG=CG=a/2,DG=AH=CH=b/2
△DEH~△DFG,EH=DH*FG/DG=a/2*x/(b/2)=ax/b
AE^2+BF^2=(AH-EH)^2+(BG+GF)^2=(b/2-ax/b)^2+(a/2+x)^2=b^2+a^2x^2/b^2+a^2/4+x^2
EF^2=CE^2+CF^2=(CH+EH)^2+(CG-GF)^2=(b/2+ax/b)^2+(a/2-x)^2=b^2+a^2x^2/b^2+a^2/4+x^2
所以,EF^2=AE^2+BF^2
收起