an=2n-1,bn=2*(1/3)^n,cn=anbn,求证c(n+1)注:C(n+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:32:52
an=2n-1,bn=2*(1/3)^n,cn=anbn,求证c(n+1)注:C(n+1)
an=2n-1,bn=2*(1/3)^n,cn=anbn,求证c(n+1)
注:C(n+1)
an=2n-1,bn=2*(1/3)^n,cn=anbn,求证c(n+1)注:C(n+1)
Cn=AnBn=(2n-1)*2*(1/3)^n
C(n+1)=[2(n+1)-1]*2*(1/3)^(n+1)=(2n+1)*2*(1/3)^(n+1)
C(n+1)
等差数列{an},{bn}的前n项和分别为An,Bn,切An/Bn=2n/3n+1,求lim(n→∞)an/bn
若bn=3的n次方*an,求bn的前n项和an=2n-1
An=n(3^n-1) Bn=(3^(n-1))/An Bn前n项和为Sn 比较S(2^n)与n的大小
计算等差数列{an}{bn}的前n项和分别为An.Bn,且An/Bn=2n/(n+1)求limn→∞(an/bn)
an=2*3^n-1 若数列bn满足bn=an+(-1)^n*ln(an),求数列bn前n项和Sn
{an}{bn}都是等差数列,已知An/Bn(各自前n项和)=(5n+3)/(2n-1)则an/bn=?
已知等差数列{an}和{bn},他们的前n项之和为An和Bn,若An/Bn=(5n+3)/(2n-1)A9/B9
已知{an},{bn}均为等差数列,前n项的和为An,Bn,且An/Bn=2n/(3n+1),求a10/b10的值
已知在直角坐标系中,An(an,0),Bn(0,bn)(n∈N*),其中数列{an},{bn}都是递增数列……已知在直角坐标系中,An(an,0),Bn(0,bn)(n∈N*),其中数列{an},{bn}都是递增数列.(1)若an=2n+1,bn=3n+1,判断直线A1B1与A2B2是否
已知数列{an},其中a1=1,a(n+1)=3^(2n-1)*an(n∈N),数列{bn}的前n项和Sn=log3(an/9^n)(n∈N)求an bn
(1/n)^3+(2/n)^3+……(n/n)^3=an^2+bn+c/n 数学归纳法(1/n)^3+(2/n)^3+……(n/n)^3=(an^2+bn+c)/n 数学归纳法求证
已知an=1/n,bn^2≤bn-bn+1 (其中n属于正整数)证明(1)bn
已知an=1/n,bn^2≤bn-bn+1 (其中n属于正整数)证明(1)bn
等差数列{an}的前n项和为An,等差数列{bn}的前n项和为Bn若Bn/An=n/3n+1 1.求a5/b5 2 an/bn
an=2^n+3^n,bn=a(n+1)+kan ,{bn}是等比数列,k=
数列 an=2n-1 设bn=an/3^n 求和tn=b1+..bn?
已知an=n/(2^n),bn=ln(1+an)+1/2 an^2,证明,对一切n∈N*,2/(2+an)<an/bn成立
数列an=ln(1+1/n),bn=1/n-1/n^2,证明an>bn