求数列an=(2n-1)(2n+1)(2n+3)前n项的和 求和:1*1!+2*2!+3*3!+...+n*n!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:11:43
求数列an=(2n-1)(2n+1)(2n+3)前n项的和 求和:1*1!+2*2!+3*3!+...+n*n!
求数列an=(2n-1)(2n+1)(2n+3)前n项的和 求和:1*1!+2*2!+3*3!+...+n*n!
求数列an=(2n-1)(2n+1)(2n+3)前n项的和 求和:1*1!+2*2!+3*3!+...+n*n!
(1)Sn=1*3*5+3*5*7+5*7*9+……+(2n-1)(2n+1)(2n+3)
=1*3*5+1/8*(3*5*7*9-1*3*5*7)+1/8*(5*7*9*11-3*5*7*9)+……+1/8*[(2n-1)(2n+1)(2n+3)(2n+5)-(2n-3)(2n-1)(2n+1)(2n+3)]
=15/8+(2n-1)(2n+1)(2n+3)(2n+5)/8
(2)
1*1!+2*2!+3*3!+...+n*n!
=(2-1)*1!+(3-1)*2!+(4-1)*3!+...+(n+1-1)*n!
=(2!-1!)+(3!-2!)+(4!-3!)+……+【(n+1)!-n!】
=(n+1)!-1
数列{an},a1=1,an+1=2an-n^2+3n,求{an}.
数列{an}中,a1=1,an+1/an=n/n+2,求an
数列an,an=(2n-1)+1/【3n(n+1)】,求Sn
在数列{an}中,an=1/n(n+1)(n+2),求Sn的极限
求数列an=n(n+1)(2n+1)的前n项和.
对于数列A(n),极限(2n-1)An=1,求极限 n*A(n)
数列an=((-1)^n + 4n)/2^n,求前n项和Sn
已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn
数列An的平方=数列A(n-1)+2;求数列An的公式?
数列{an}满足a1=2,a(n+1)=2an+n+2,求an
设数列{an}中,若an+1 =an+ an+2 (n∈N*),则称数列{an}为“凸数列” .设数列{an}为“凸数列”求第二问证明设数列{an}中,若an+1 =an+ an+2 (n∈N*),则称数列{an}为“凸数列” .设数列{an}为“凸数列”,若a1 =1,
数列an满足a1=1/3,Sn=n(2n-1)an,求an
数列{an},a1=3,an*a(n+1)=(1/2)^n,求an
数列an中,若a( n+1)=an+(2n-1)求an
已知数列{an}中,a(n+1)=an+2^n,a1=3,求an
已知数列an中,a1=1,an/an-1=n+1/n,n大于等于2,求an
.感激= 已知数列{an}中,a1=3,an=(2^n)*a(n-1) (n》2,n∈N*)求数列an通项公式
已知数列{an}中,an={2n-1,n为奇数,3^n,n为偶数,求数列{an}的前2n项和S2n