设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn(Ⅱ) 证明:n∈N*,Sn,Sn+1,Sn+2不构成等比数列.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:31:47
设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn(Ⅱ) 证明:n∈N*,Sn,Sn+1,Sn+2不构成等比数列.
设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn(Ⅱ) 证明:n∈N*,Sn,Sn+1,Sn+2不构成等比数列.
设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn(Ⅱ) 证明:n∈N*,Sn,Sn+1,Sn+2不构成等比数列.
可以采用反证法.
等差数列的公式可以写成Sn=n[2a+2(n-1)],Sn+1=n(2a+2n),Sn+2=n[2a+2(n+1)]
若三者构成等比数列,则必有Sn*Sn+1=(Sn+2)^2,因此得到
[a+(n-1)][a+(n+1)]=(a+n)^2,得到a^2+2an+n^2-1=a^2+2an+n^2,因此推出-1=0,显然结论是错误的因此,Sn,Sn+1,Sn+2不构成等比数列.
这种题型一般都用反证法的.
Sn=(a1+an)n/2=(a+n-1)n
Sn+1=(a+n)(n+1)
Sn+2=(a+n+1)(n+2)
( Sn+1)*( Sn+1)=(a+n)(a+n)(n+1)(n+1)
Sn*Sn+2=(a+n-1)n(a+n+1)(n+2)
=[(a+n)(a+1...
全部展开
Sn=(a1+an)n/2=(a+n-1)n
Sn+1=(a+n)(n+1)
Sn+2=(a+n+1)(n+2)
( Sn+1)*( Sn+1)=(a+n)(a+n)(n+1)(n+1)
Sn*Sn+2=(a+n-1)n(a+n+1)(n+2)
=[(a+n)(a+1)-1]=[(n+1)(n+1)-1]
所以Sn的平方不可能等于Sn+1*Sn+2;
故存在任意正整数n,Sn,Sn+1,Sn+2不构成等比
收起
S²n+1=(n+1)²(n+a)² Sn×Sn+2=n(n+2)(n+a-1)(n+a+1) 设三者构成等比数列,S²n+1=Sn×Sn+2 即(n+1)²(n+a)²=n(n+2)(n+a-1)(n+a+1) (n+1)²(n+a)²=n(n+2)[(n+a)²-1] (n+1)²(n+a)²=n(n+2)(n+a)²-n(n+2) 移向得,(n+a)²[(n+1)²-n(n+2)]=-n(n+2) (n+a)²=-n(n+2) ∵n∈N*, ∴n>0 ∵(n+a)²≥0而-n(n+2)<0 两者矛盾,∴Sn,Sn+1,Sn+2不构成等比数列.