1不查表,求2sin20+cos10+tan20sin10的值 2已知向量a=(2,1+sinx),b+(1,cosx),求当x属于[π/4,π/2]时,求a.b的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 19:52:00
1不查表,求2sin20+cos10+tan20sin10的值 2已知向量a=(2,1+sinx),b+(1,cosx),求当x属于[π/4,π/2]时,求a.b的取值范围
1不查表,求2sin20+cos10+tan20sin10的值 2已知向量a=(2,1+sinx),b+(1,cosx),求当x属于[π/4,π/2]时,求a.b的取值范围
1不查表,求2sin20+cos10+tan20sin10的值 2已知向量a=(2,1+sinx),b+(1,cosx),求当x属于[π/4,π/2]时,求a.b的取值范围
1.2sin20°+cos10°+tan20sin10°
=2sin20°+cos10°+sin20(sin10°/cos20°)
=2sin20°+[(cos20°cos10°+sin20sin10°)/cos20°]
=2sin20°+[cos(20°-10°)/cos20°]
=2sin20°+(cos10°/cos20°)
=(2sin20°cos20°+cos10°)/cos20°
=(sin40°+cos10°)/cos20°
=(sin40°+sin80°)/cos20°
=2sin[(40°+80°)/2]*cos[(40°-80°)/2]/cos20°
=2sin60°*cos20°/cos20°
=2*√3/2
=√3
2.a*b=(2,1+sinx)*(1,cosx)
=2+(1+sinx)cosx
=2+cosx+sinx*cosx
=2+cosx(1+sinx)
x属于[π/4,π/2]
则cosx(1+sinx)属于[0,(根号2+1)/2]
则a*b=2+cosx(1+sinx)属于
[2,(根号2+5)/2]
1.a=√3
2.[2,(根号2+5)/2]