∫(x^2-a^2)^1/2dx=?要详细过程,答案是1/2[x(x^2-a^2)^1/2+a^2㏑|x+(x^2-a^2)^1/2|]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:02:30
∫(x^2-a^2)^1/2dx=?要详细过程,答案是1/2[x(x^2-a^2)^1/2+a^2㏑|x+(x^2-a^2)^1/2|]
∫(x^2-a^2)^1/2dx=?要详细过程,答案是1/2[x(x^2-a^2)^1/2+a^2㏑|x+(x^2-a^2)^1/2|]
∫(x^2-a^2)^1/2dx=?要详细过程,答案是1/2[x(x^2-a^2)^1/2+a^2㏑|x+(x^2-a^2)^1/2|]
∫[√(x²-a²)]dx=?
设x=asecu,则dx=asecutanudu,x²-a²=a²(sec²u-1)=a²tan²u,√(x²-a²)=atanu,
secu=x/a,tanu=[√(x²-a²)]/a.
代入原式得:∫[√(x²-a²)]dx=a²∫tan²usecudu=a²∫secu(sec²u-1)du=a²[∫sec³udu-∫secudu]
=a²[(1/2)secutanu+(1/2)ln(secu+tanu)-ln(secu+tanu)]+lnc₁
=a²[(1/2)secutanu-(1/2)ln(secu+tanu)]+lnc₁
=(1/2)[(x√(x²-a²)]-(a²/2)ln[(x/a)+(1/a)√(x²-a²)]+lnc₁
=(1/2){x√(x²-a²)-a²[ln(x+√(x²-a²)-lna]}+lnc₁
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+a²ln(ac₁)
=(1/2){x√(x²-a²)-a²ln[x+√(x²-a²)]}+C
[原答案错个符号].
∫x[x/[(2a-x)]^(1/2)dx=?
∫(1/a^2-x^2)dx
求∫ (dx / a^2- x^2) (a>0常数)附加个:∫ (dx / (a-x)(a+x))= 1/2a∫ ((a-x)+(a+x) / (a-x)(a+x))dx 这是怎么换算的?
∫ x/(1+X^2)dx=
∫(x+1/x)^2dx=?
∫(x^2+a^2)^(-1/2)dx=?
下列无穷积分收敛的是 A ∫sinx dx B ∫e^-2x dx C ∫1/x dx D∫1/√x dx
∫[dx/(e^x(1+e^2x)]dx
∫1/x√(a^2-x^2)dx
∫(x-1)^2dx,
∫x^1/2dx
∫(1+x)/(X^2)dx=∫ [(1+x)/(X^2)]dx得什么?
∫dx/(x^2-a^2)只会做到这一步∫1/(x-a)(x+a)dx
∫1/1-x^2dx=
∫sqr(a^2+x^2)dx
∫(1+x^2)dx =
∫(2cosx +1/x)dx=
∫(lnx)/(1+x^2)dx=?