证明y=cosx½不是周期函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:50:41
证明y=cosx½不是周期函数
证明y=cosx½不是周期函数
证明y=cosx½不是周期函数
周期函数的定义:设有函数y=f(x),x∈D,若存在整数T,使得对于任何x∈D都成立f(x+T)=f(x),则称f(x)为周期函数.
对于f(x)=cos(√x),设f(x+T)=f(x),T>0,
即cos(√x+T)=cos(√x),
因此√(x+T)=(√x)+2kπ
两边平方得 x+T=x+4kπ^2+4kπ√x
整理得T=4kπ(√x)+4kπ^2
显然T 随着x的增大而增大,这说明不存在(同)一个整数T,使得对于任何(!)x∈D都成立f(x+T)=f(T)
所以y=cos(√x)不是周期函数.