已知sinAcosB=1, 则cos[(A+B)/2]等于多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:17:13
已知sinAcosB=1, 则cos[(A+B)/2]等于多少?
已知sinAcosB=1, 则cos[(A+B)/2]等于多少?
已知sinAcosB=1, 则cos[(A+B)/2]等于多少?
这里只讨论在0到360度之间!
由于-1
因为 sinA ∈[-1,1]、cosB ∈ [-1,1]
所以,对于 sinAcosB =1,必然有
sinA = cosB = 1
或
sinA = cosB = -1
对于 sinA = cosB = 1 情况
A = 2m∏ + ∏/2
B = 2n∏
其中 m 、 n 均为整数
(A+B)/2 = (m+n)∏ ...
全部展开
因为 sinA ∈[-1,1]、cosB ∈ [-1,1]
所以,对于 sinAcosB =1,必然有
sinA = cosB = 1
或
sinA = cosB = -1
对于 sinA = cosB = 1 情况
A = 2m∏ + ∏/2
B = 2n∏
其中 m 、 n 均为整数
(A+B)/2 = (m+n)∏ + ∏/4
cos[(A+B)/2] = √2/2 或 -√2/2
对于 sinA = cosB = -1 情况
A = 2p∏ + 3∏/2
B = 2q∏ + ∏
其中 p 、 q 均为整数
(A+B)/2 = (p+q+1)∏ + ∏/4
cos[(A+B)/2] = √2/2 或 -√2/2
综合以上2种情况,有结论
cos[(A+B)/2] = √2/2 或 -√2/2
===================
楼上只讨论 0 - 360 度之间的做法是不严密。仅相当于 本解法中 m+n 、以及 p+q+1 为偶数的情况。而它们不必然是偶数。
收起