设f(x+1/x)=x^2+1/x^2,g(x+1/x)=x^3+1/x^3,求f【g(x)】设f(x+1/x)=x^2+1/x^2,g(x+1/x)=x^3+1/x^3,求f【g(x)】

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:36:36

设f(x+1/x)=x^2+1/x^2,g(x+1/x)=x^3+1/x^3,求f【g(x)】设f(x+1/x)=x^2+1/x^2,g(x+1/x)=x^3+1/x^3,求f【g(x)】
设f(x+1/x)=x^2+1/x^2,g(x+1/x)=x^3+1/x^3,求f【g(x)】
设f(x+1/x)=x^2+1/x^2,g(x+1/x)=x^3+1/x^3,求f【g(x)】

设f(x+1/x)=x^2+1/x^2,g(x+1/x)=x^3+1/x^3,求f【g(x)】设f(x+1/x)=x^2+1/x^2,g(x+1/x)=x^3+1/x^3,求f【g(x)】
换元法
设 t=x+1/x ;t^2=x^2+2+1/x^2; x^2+1/x^2=t^2-2
即f(t)=t^2-2
所以,f(x)=x^2-2
g(x)=x^3+1/x^3=(x+1/x)(x^2+1/x^2-1)
因为[a^3+b^3=(a+b)(a^2-ab+b^2)]
则g(t)=t(t^2-2-1)
=t(t^2-3)
=t^3-3t
则 g(x)=x^3-3x
f[g(x)]=(g(x))^2-2=(x^3-3x)^2-2=x^6-6x^4+9x^2-2

f[x+(1/x)]
=x^2+(1/x)^2
=[x+(1/x)]^2-2
令x+(1/x)=t
则f(t)=t^2-2,(t≤-2或t≥2)

g(x+(1/x))=x^3+(1/x)^3
=[x+(1/x)]^3-3[x+(1/x)]
令x+(1/x)=t

g(t)=t^3-3t,(t≤-2或t≥2)
∴f(g(x))=f(x^3-3x)
=(x^3-3x)^2-2(x≤-2或x≥2)

先看这个(x+1/x)^2=x^2+1/x^2+2
(x+1/x)^3=x^3+1/x^3+3x+3/x
所以f(x+1/x)=x^2+1/x^2=(x+1/x)^2-2
g(x+1/x)=x^3+1/x^3=(x+1/x)^3-3(x+1/x)
设x+1/x=a
f(a)=a^2-2
g(a)=a^3-3a
f(g(x))=x^6-6a^4+9a^2-2