复数z=(1-i)^10*(3-4i)^2/(-√3+i)^8的模为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:25:55
复数z=(1-i)^10*(3-4i)^2/(-√3+i)^8的模为
复数z=(1-i)^10*(3-4i)^2/(-√3+i)^8的模为
复数z=(1-i)^10*(3-4i)^2/(-√3+i)^8的模为
(1-i)²
=1-2i-1
=-2i
所以(1-i)^10=-32i^5=-32i
(3-4i)²
=9-24i-16
=-7-24i
-√3+i
=1/2(cos5π/6+isin5π/6)
所以(-√3+i)^8=(1/256)(cos20π/3+isin20π/3)
=(1/256)(-√3+i)/2
所以z=-32i|-7-24i|/(1/512)(-√3+i)
|z|=32*25/(1/256)
=204800
若复数z=3-4i/1+i, 则复数共轭区间,z=?
复数z=(1+i)^2/(3-4i)则复数z的模为
已知复数z=(2+i)(i-3)+4-2i 求复数z的共轭复数~z及(~z)
若复数z满足(1-3i)z=10i,则z等于
若复数z满足(1—3i)z=10i.则z等于多少
已知复数z满足(1+2i)z=4+3i,求z
F(z)=|1+z|-z的共扼复数,且F(-z)=10-3i,求复数z
已知复数z满足z*z拔=4,且|z+1+√3i|=4,求复数z
已知复数Z满足:|Z|=1+3i-Z,求[(1+i)^3*(3+4i)]/Z
已知复数Z满足:|Z|=1+3i-Z,求[(1+i)^2(3+4i)^2]/2Z
已知复数|z|=1+3i-z,求z?
已知复数z满足z*z-3i*z=1+3i,求z
已知复数z满足z=1+i+i^2+i^3+…+i^2015,则复数z=?
已知复数Z满足:|Z|=1+3i-Z,求复数Z
已知复数z满足I z+1+i I=I z-1+3i I,则IzI的最小值
复数z=[(1+i)^2+3(1-i)]/(2+i),若z^2+a/z
复数z=[(1+i)^2+3(1-i)]/(2+i),若z^2+a/z
复数z=[(1+i)^2+3(1-i)]/(2+i),若z^2+a/z