设α1,α2,α3,β均为3维向量,则下列命题正确的是()(1)若β不能由α1,α2,α3线性表示,则α1,α2,α3必线性相关(2)若β不能由α1,α2,α3线性表示,则α1,α2,α3必线性无关(3)若α1,α2,α3线性相关,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:45:02

设α1,α2,α3,β均为3维向量,则下列命题正确的是()(1)若β不能由α1,α2,α3线性表示,则α1,α2,α3必线性相关(2)若β不能由α1,α2,α3线性表示,则α1,α2,α3必线性无关(3)若α1,α2,α3线性相关,
设α1,α2,α3,β均为3维向量,则下列命题正确的是()
(1)若β不能由α1,α2,α3线性表示,则α1,α2,α3必线性相关
(2)若β不能由α1,α2,α3线性表示,则α1,α2,α3必线性无关
(3)若α1,α2,α3线性相关,则β必可由α1,α2,α3线性表示
(4)若α1,α2,α3线性无关,则β必可由α1,α2,α3线性表示
A.(1)(2) B.(1)(3) C.(1)(4) D.(2)(4) 答案选的是C

设α1,α2,α3,β均为3维向量,则下列命题正确的是()(1)若β不能由α1,α2,α3线性表示,则α1,α2,α3必线性相关(2)若β不能由α1,α2,α3线性表示,则α1,α2,α3必线性无关(3)若α1,α2,α3线性相关,
你可以,从第(4)出发,α1,α2,α3线性无关,β必可由α1,α2,α3线性表示
因为当β不能由α1,α2,α3线性表示,则考虑
k1α1+k2α2+k3α3+k4β=0 已知β不能由α1,α2,α3线性表示,则k4=0 ,否则
当k4不等于0时,通过移项可知 β可由α1,α2,α3线性表示 与假设不相符
又α1,α2,α3线性无关,那么k1=k2=k3=0 从而知道 k1=k2=k3=k4=0
得出α1,α2,α3,β 线性无关,表明 3维空间里有4个线性不相关的向量 ,矛盾
可知(4)对了
(1)与(4)是互为逆否命题.那么(1)对了
至于(3)与(2),可知是错的!

设向量α=(1,2,3),β=(3,2,1)则向量α,β的内积为 设a向量=(3/2,sinα),b向量=(cosα,1/3),且a向量平行于b向量,则锐角α为 平行四边形ABCD中,向量AC=(1,根号3),向量BD=(-2,0),设向量AC与向量AB的夹角为α,则α=平行四边形ABCD中,向量AC=(1,根号3),向量BD=(-2,0),设向量AC与向量AB的夹角为α,则α= 设向量a=(3/2,sinα),向量b=(cosα,1/3),且向量a平行向量b,则锐角α=? 设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α-β)= 在边长为1的正三角形ABC中,设向量BC=2向量BD,向量CA=3向量CE,则向量AD·向量BE= 在边长为1的正三角形ABC中,设向量BC=2向量BD,向量CA=3向量CE,则向量AD*向量BE=? 若等边三角形ABC的边长为1,设向量BC=2向量BD,向量CA=3向量CE,则向量AD*向量BE= 在边长为2的等边三角形ABC中,设向量BC=2向量BD,向量CA=3向量CE,则向量AD·向量BE=?求在边长为2的等边三角形ABC中,设向量BC=2向量BD,向量CA=3向量CE,则向量AD·向量BE=?为什么不是1!我算了很 设向量a等于{1,-2,3}则其模为a向量的模等于 设向量a=(3/2,sinα),向量b=(cosα,1/3),且向量a平行于向量b,锐角α为多少度? 设向量a=(1.5,sinα) 向量b=(cosα,1/3) 且向量a平行向量b 则锐角阿尔法为A 30° B 60° C75° D 45° 已知向量a=(-3,1)b=(1,-2),m=a+kb 1若向量m与向量2a-b垂直 求k 2设a与已知向量a=(-3,1)b=(1,-2),m=a+kb1若向量m与向量2a-b垂直 求k2设a与m的夹角为α,b与m的夹角为β,是否存在k,使α+β=π. 设α、β均为3维列向量,且满足αт β=5,则矩阵β αт的特征值为?“因为矩阵A=β αт的秩为1设α、β均为3维列向量,且满足αт β=5,则矩阵β αт的特征值为?“因为矩阵A=β αт的秩为1”,为什么呢?希 已知向量a=(1,2),b=(cosα,sinα),设向量m=向量a+t向量b(t为实数),若向量a⊥向量b且向量a-向量b与向量m的夹角为π/4,则t=? 设向量a=(1-cosα,√3),向量b=(sinα,3),且a//b,则锐角α为? 已知向量a=(1,2),b=(cosα,sinα),设向量m=向量a+t向量b(t为实数).求向量/向量a-向量b/的最大值 在边长为1的正三角形ABC中,设向量BC=2向量BD,向量CA=3向量CE,向量AD乘向量BE等于多少?