已知函数f(x)=e^x(ax^2+a+1) a∈R.若f(x)≥2/e^2 对任意x∈[-2,-1 ]恒成立,求a的范围.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 19:53:38
已知函数f(x)=e^x(ax^2+a+1) a∈R.若f(x)≥2/e^2 对任意x∈[-2,-1 ]恒成立,求a的范围.
已知函数f(x)=e^x(ax^2+a+1) a∈R.若f(x)≥2/e^2 对任意x∈[-2,-1 ]恒成立,求a的范围.
已知函数f(x)=e^x(ax^2+a+1) a∈R.若f(x)≥2/e^2 对任意x∈[-2,-1 ]恒成立,求a的范围.
由已知得f'(x)=e^x(ax^2+2ax+a+1)
当a=0时,f'(x)=e^x>0
此时f(x)是单调递增的,因此在x∈[-2,-1 ]时,f(x)≥f(-2)=e^(-2)与已知f(x)≥2/e^2矛盾,所以a=0不符合条件,因此a≠0
当a>0时,而ax^2+2ax+a+1的判别式=(2a)^2-4a(a+1)=-4a0,所以f‘(x)>0,即f(x)在[-2,-1]上单调递增,
因此f(x)≥f(-2)=(4a+1+1)/e^2=(5a+1)/e^2≥2/e^2
所以5a+1≥2,从而a≥1/5.
当a
已知函数f(x)={ax2+1,x≥0 (a+2)e^ax,x
已知函数f(x)=e∧x+ax,g(x)=ax-lnx,其中a
已知函数f(x)=ln(1+e^2x)+ax是偶函数则a=
已知函数f(x)=x^2*e^(ax),其中a
已知函数f(x)=(x²-2x/a+1/a)e^ax(a>0),讨论函数单调性
已知函数f(x)=ax-a/x-2lnx
已知函数f(x)=e^2x-ax求f(x)的单调区间
函数f(x)={ax^2+1,x≥0;(a^2-1)e^ax,x
已知函数f(x) =ax^2e^x其中a不等于0.1.求f(x) 的导函数2.求f(x) 的极大值.
已知a为实数,函数f(x)=(e^x)(x^2-ax+a)问 若a>2,求函数f(x)的单调区间.
已知函数f(x)=x^2e^(-ax) (a>0),求函数在[1,2] 上的最大值
已知函数f(x)=x^2e^-ax(a>0),求函数在[1,2]上的最大值
已知函数f(x)=ax-1/x-2lnx ,a为何值时,函数f(x)在区间[1/e,e]上有零点
已知a属于R,函数f(x)=(-x^2+ax)*e^x,当a=2,求函数f(x)的单调递增区间.大神们帮帮忙
已知函数f(x)=e^x-ax-1(a为实数)讨论函数f(x)的单调区间
已知函数f(x)=e^x+ax^2+bx.设函数f(x)在点(t,f(t))(0
已知函数f(x)=e^x+ax-1.当a
已知函数f(x)=e^x(x^2+ax+1).求函数f(x)的极值