第十二题,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:43:46

第十二题,
第十二题,
 

第十二题,
CE,BD的数量关系是:CE=BD
证明:连AC,设AE与BD的交点为F,
因为AE平分∠BAD,
所以∠EAD=∠BAD/2=45°,
所以∠CAE=∠DAE-∠DAC=45°-∠DAC
因为EH⊥BD,
所以∠E=90°-∠HFE,
因为△ADF中,∠HFE=∠DAE+∠ADB,(三角形外角等于与它不相邻的两个内角的和)
所以∠E=90-(∠DAE+∠ADB)
=90-(45°+∠ADB)
=45-∠ADB
因为在矩形ABCD中,∠ADB=∠DAC
所以∠E=45-∠DAC,
又因为∠CAE=45-∠DAC(已证)
所以∠E=∠CAE
所以AC=CE
在矩形ABCD中,BD=AC
所以CE=BD.
摘自搜狗问问.