望翻译 ,谢谢It is expected that trade-offs between composite tensile strength and tensile ductility areneeded. For example, higher composite strength may be reached by engineering the mortar matrix to have a higher toughness and/or smaller initi
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:36:50
望翻译 ,谢谢It is expected that trade-offs between composite tensile strength and tensile ductility areneeded. For example, higher composite strength may be reached by engineering the mortar matrix to have a higher toughness and/or smaller initi
望翻译 ,谢谢
It is expected that trade-offs between composite tensile strength and tensile ductility are
needed. For example, higher composite strength may be reached by engineering the mortar matrix to have a higher toughness and/or smaller initial flaws, at the expense of ductility. The optimal mix of strength and ductility depends on the particular structural application. For the link-slab, it is clear that tensile ductility is more important to sustain the large imposed deformation, and is given priority over strength. The mix composition of the ECC described in Table 1 provides all the necessary properties required of the link-slab application [11]. In particular, the tensile strength of 3.5 MPa, a yield strain εty of 0.02% .(corresponding to a Young’s modulus E of 17.5 GPa), with a tensile ductility εtu of 2% (minimum), and a steady state crack width wss
Of 60lm, meet the target composite property requirements specified above. A typical stress–strain curve of this material is given in Fig. 2.These material properties have been obtained from a uniaxial tension test [13]. The 28-day compressive strength and strain capacity εc of this mix is about 75 MPa and 0.43%.
望翻译 ,谢谢It is expected that trade-offs between composite tensile strength and tensile ductility areneeded. For example, higher composite strength may be reached by engineering the mortar matrix to have a higher toughness and/or smaller initi
人工翻译,请审阅.
据预计,需要在复合材料的抗拉强度和拉伸延展性之间进行权衡.例如,较高的复合材料强度可通过工程设计砂浆基体具有较高的韧性和/或较小的初始缺陷来达到,但代价是延性要减小.强度和延展性的最佳组合取决于具体的结构应用.对于链接桥板来说,很显然,拉伸延展性对于承受施加的大的变形来说更加重要,并且相对于强度给予更大的优先权.在表1中记载的ECC混合组成提供了所有的链接桥板应用[11]所需的必要性能.特别是,3.5MPa的抗拉强度,0.02%的屈服应变εty(相应于17.5 GPA的杨氏模量E),以及2%(最小)的拉伸延展性εtu,和60lm的稳态裂缝宽度,满足上述规定的复合材料性能的目标要求.这种材料典型的应力 - 应变曲线在图2中给出.这些材料性质已经从单轴拉伸试验[13]中获得.这种混合组合的 28天抗压强度和应变能力εC约为75MPa和0.43%.
预计复合抗拉强度和拉伸延性areneeded之间的取舍。例如,更高的复合强度可以达到工程砂浆矩阵高韧性和/或较小的初始缺陷,为代价的延性。最优的混合强度和延性取决于特定结构的应用程序。link-slab,很明显,拉伸延性维持强制变形大,更重要和强度为主。表1中描述的ECC的混合成分提供了所需的所有必要的属性link-slab应用[11]。特别是,3.5 MPa的抗拉强度、屈服应变εty 0.02&...
全部展开
预计复合抗拉强度和拉伸延性areneeded之间的取舍。例如,更高的复合强度可以达到工程砂浆矩阵高韧性和/或较小的初始缺陷,为代价的延性。最优的混合强度和延性取决于特定结构的应用程序。link-slab,很明显,拉伸延性维持强制变形大,更重要和强度为主。表1中描述的ECC的混合成分提供了所需的所有必要的属性link-slab应用[11]。特别是,3.5 MPa的抗拉强度、屈服应变εty 0.02�0。(对应于一个杨氏模量E 17.5 GPa),与拉伸延性εtu 2�0(最低),和一个稳定状态裂缝宽度wssOf 60 lm,满足目标综合上面指定的房地产需求。一个典型的这种材料的应力-应变曲线在图2中。这些材料属性已经从单轴拉伸试验获得[13]。28天抗压强度和应变能力εc这种混合的大约是75 MPa和0.43�= EN2ZH_CN类型
收起
据预计,复合材料的拉伸强度和拉伸延展性之间的权衡
需要。例如,更高的复合材料的强度可达到工程水泥砂浆基体有较高的韧性和/或较小的初始缺陷,牺牲延性。强度和韧性的最佳配合取决于特定结构的应用。为连接板,它是明确的,拉伸延性是维持大的附加变形更重要,并优先于强度。椭圆曲线密码体制的表1中描述的混合组合物提供了所有必要的属性的链接板的应用[ 11 ]。特别是,3.5 MPa的拉伸强度,屈服应变ε...
全部展开
据预计,复合材料的拉伸强度和拉伸延展性之间的权衡
需要。例如,更高的复合材料的强度可达到工程水泥砂浆基体有较高的韧性和/或较小的初始缺陷,牺牲延性。强度和韧性的最佳配合取决于特定结构的应用。为连接板,它是明确的,拉伸延性是维持大的附加变形更重要,并优先于强度。椭圆曲线密码体制的表1中描述的混合组合物提供了所有必要的属性的链接板的应用[ 11 ]。特别是,3.5 MPa的拉伸强度,屈服应变ε泰0.02%。(对应的杨氏模量E 17.5 GPa),用拉伸塑性ε涂2%(最低),和一个稳态裂纹宽度W
对60流明,满足目标的复合性能符合以上要求的。一个典型的应力应变曲线的–这种材料是在图2中给出。这些材料的性质已经从单轴拉伸试验获得的[ 13 ]。28天抗压强度和应变能力εC这组合约75 MPa和0.43%
收起