等差数列{an}{bn},Sn,Tn分别是前n项和,且Sn/Tn=(7n+1)/(n+3),则(a2+a5+a17+a22)/(b8+b10+b12+b16)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:40:55
等差数列{an}{bn},Sn,Tn分别是前n项和,且Sn/Tn=(7n+1)/(n+3),则(a2+a5+a17+a22)/(b8+b10+b12+b16)=
等差数列{an}{bn},Sn,Tn分别是前n项和,且Sn/Tn=(7n+1)/(n+3),则(a2+a5+a17+a22)/(b8+b10+b12+b16)=
等差数列{an}{bn},Sn,Tn分别是前n项和,且Sn/Tn=(7n+1)/(n+3),则(a2+a5+a17+a22)/(b8+b10+b12+b16)=
A2+A5+A17+A22=(A1+d)+(A1+4d)+(A1+16d)+(A1+21d)=4A1+42d=2(2A1+21d)
同理B8+B10+B12+B16=4B1+42d'=2(2B1+21d')
S22=22A1+(1/2)×22×21d=22A1+231d=11(2A1+21d)
同理T22=11(2B1+21d')
(A2+A5+A17+A22)/(B8+B10+B12+B16)
=[2(2A1+21d)]/[2(2B1+21d')]
=[11(2A1+21d)]/[11(2B1+21d')]
=S22/T22
=(7×22+1)/(22+3)
=31/5
等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,求an/bn的表达式
等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn
等差数列{an},{bn}的前n项分别为Sn,Tn,若Sn/Tn=2n/3n+1,则an/bn=多少?
等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1 ,则an/bn=
等差数列an`bn`的前n项和分别为Sn`Tn.若Sn/Tn=(7n+1)/(4n+27),求an/bn
等差数列{an},{bn}的前n项和分别为Sn,Tn,An/Bn=(7n+1)/(4n+27) 求Sn/Tn
两个等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,求an/bn.
两个等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,求an/bn.
等差数列An,Bn的前n项合分别为Sn和Tn,若Sn/Tn=2n/3n+1,求An/Bn的表达式.
已知两个等差数列{an},{bn}的前n项的和分别为Sn,Tn.若Sn/Tn=(5n+3)/(2n-1).求an/bn
已知等差数列an,bn,的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,求an/bn,
等差数列{An},{Bn}的前n项和分别为Sn与Tn.若Sn/Tn=2n/(3n+1),则An/Bn=____.等差数列{An},{Bn}的前n项和分别为Sn与Tn.若Sn/Tn=2n/(3n+1),则An/Bn=____.
求极限等差数列an和bn等差数列an和bn的前n项和分别用Sn和Tn表示 若Sn/Tn=4n/3n+5 则liman/bn的值为多少
等差数列{an}{bn}的前n项和分别为Sn,Tn 若Sn/Tn=2n/3n+1 求a7/b3
两等差数列{an}和{bn},前n项和分别为Sn,Tn且Sn/Tn=7n+2/n+3则a2+a20/b7+b15=
等差数列{an}与{bn}的前n项和分别为Sn和Tn,若Sn/Tn=(3n-2)/(2n+1),求a7/b7
等差数列{an}和{bn}的前几项和分别为Sn和Tn,若Sn:Tn=2n:(3n+1),求a7:b7
等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,则a5/a7=