已知函数f(x)=2sinx(sinx+cosx) 求使f(x)大于等于2成立的x的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:06:06

已知函数f(x)=2sinx(sinx+cosx) 求使f(x)大于等于2成立的x的取值范围
已知函数f(x)=2sinx(sinx+cosx) 求使f(x)大于等于2成立的x的取值范围

已知函数f(x)=2sinx(sinx+cosx) 求使f(x)大于等于2成立的x的取值范围
f(x)=2sinx(sinx+cosx)
=2sin²x+2sinxcosx
=1-cos2x+sin2x
=1+√2sin(2x-π/4)
因为f(x)≥2成立,即1+√2sin(2x-π/4)≥2
√2sin(2x-π/4)≥1
sin(2x-π/4)≥√2/2
所以π/4+2kπ≤2x-π/4≤3π/4+2kπ
π/2+2kπ≤2x≤π+2kπ
π/4+kπ≤x≤π/2+kπ k∈z

f(x)=2sinx(sinx+cosx)=2(sinx)^2+2sinxcosx=sin2x-cos2x+1=√2sin(2x-π/4)+1。
f(x)>=2,则sin(2x-π/4)>=√2/2,2kπ+π/4<=2x-π/4<=2kπ+3π/4,即kπ+π/4<=x<=kπ+π/2。
所以,x的取值范围是[kπ+π/4,kπ+π/2],k为整数。

f(x)=2sinx(sinx+cosx)
=2sin²x+2sinxcosx
=1-cos2x+sin2x
f(x)≥2
则:
sin2x-cos2x≥1
√2(sin2xcosπ/4-cos2xsinπ/4)≥1
sin(2x-π/4)≥√2/2
2kπ+π/4≤2x-π/4≤2kπ+3π/4
2kπ+π/2≤2x≤2kπ+π
kπ+π/4≤x≤kπ+π/2;k∈Z