已知等差数列an,a1=10,d=2,数列an满足bn=(n/2)an-6n,n∈N*记cn=max{an,bn},求数列的Snmax{a,b}表示a与b的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 14:33:26

已知等差数列an,a1=10,d=2,数列an满足bn=(n/2)an-6n,n∈N*记cn=max{an,bn},求数列的Snmax{a,b}表示a与b的最大值
已知等差数列an,a1=10,d=2,数列an满足bn=(n/2)an-6n,n∈N*
记cn=max{an,bn},求数列的Sn
max{a,b}表示a与b的最大值

已知等差数列an,a1=10,d=2,数列an满足bn=(n/2)an-6n,n∈N*记cn=max{an,bn},求数列的Snmax{a,b}表示a与b的最大值
易知 an = 2n+8
bn=n²-2n
令bn-an=n²-4n-8>0
n>2+2√3或者 n<2-2√3
也就是说
cn=an n<=2+2√3
cn =bn n>2+2√3
an的前n项和为n²+9n
bn的前n项和为 1²+2²+...+n²-2(1+2+...n)
=n(n+1)(2n+1)/6-n(n+1)
=n(n+1)(2n-5)/6
所以
sn = n²+9n n<6
sn=5²+9*5+n(n+1)(2n-5)/6-5*6*5/6
=n(n+1)(2n-5)/6+45 n>=6