证明(n+2)(n+4)+(n+4)(n+6).3n(3n+2)=(13n^3+24n^2+8n)\3一道数学证明题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:18:07

证明(n+2)(n+4)+(n+4)(n+6).3n(3n+2)=(13n^3+24n^2+8n)\3一道数学证明题
证明(n+2)(n+4)+(n+4)(n+6).3n(3n+2)=(13n^3+24n^2+8n)\3
一道数学证明题

证明(n+2)(n+4)+(n+4)(n+6).3n(3n+2)=(13n^3+24n^2+8n)\3一道数学证明题
用数列的知识可以做:
设数列(An)通项为an=(t+2+2*(n-1))*(t+2+2*n)=4n^2+(4t+4)n+t^2+2t(为了避免干扰,将上式的常数n以t代替)
这里假设存在另一数列(Bn)通项bn使得an=bn+1-bn;待定系数法可解得bn.
原命题左边=a1+a2+.+at=(b2-b1)+(b3-b2)+.+(bt+1 -bt)=bt+1 - b1;将bn通项代入既可证明.