如图,在三角形ABC中,AB=AC,角BAC=90度.D是BC上任意一点.求证:BD^+CD^=2AD^注:BD^表示BD的二次方,下同.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:47:02

如图,在三角形ABC中,AB=AC,角BAC=90度.D是BC上任意一点.求证:BD^+CD^=2AD^注:BD^表示BD的二次方,下同.
如图,在三角形ABC中,AB=AC,角BAC=90度.D是BC上任意一点.求证:
BD^+CD^=2AD^
注:BD^表示BD的二次方,下同.

如图,在三角形ABC中,AB=AC,角BAC=90度.D是BC上任意一点.求证:BD^+CD^=2AD^注:BD^表示BD的二次方,下同.
在BC上取其中点E,连接AE
则CE=BE=AE
设BD=X,ED=Z,AD=Y,则CE=AE=X+Z
则有 AE^2+ED^2=Y^2 即 (X+Z)^2+Z^2=Y^2
又BD^2+CD^2=2AD^2 可变形为:
即 (BD+CD)^2-2BD*CD=2AD^2
所以 (2X+2Z)^2-2X(X+2Z)=2Y^2
化简 即得X^2+2XZ+2Z^2=Y^2
又(X+Z)^2+Z^2=X^2+2XZ+2Z^2=Y^2
所以BD^2+CD^2=2AD^2 成立
祝你学习天天向上,加油!

过点A做BC的垂线。
然后用勾股定理就行咯。

过D做AB垂线交AB于E,过D做AC垂线交AC于F
因为:三角形ABC为等腰直角三角形
所以:三角形BED和三角形CFD都为等腰直角三角形 且 DE=AF AE=DF
由勾股定理得:
BD平方=BE平方+DE平方 即BD平方=2倍DE平方
CD平方=DF平方+CF平方 即CD平方=2倍DF平方
因为:AD平方=DE平方+DF平方

全部展开

过D做AB垂线交AB于E,过D做AC垂线交AC于F
因为:三角形ABC为等腰直角三角形
所以:三角形BED和三角形CFD都为等腰直角三角形 且 DE=AF AE=DF
由勾股定理得:
BD平方=BE平方+DE平方 即BD平方=2倍DE平方
CD平方=DF平方+CF平方 即CD平方=2倍DF平方
因为:AD平方=DE平方+DF平方
所以:2倍AD平方=2倍DE平方+2倍DF平方
2倍AD平方=BD平方+CD平方

收起