数列 已知数列an的前n项和sn=2an-4(1)求an 的通项公式(2)设bn=n×an/2(n次方),求数列bn的前n项和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:25:06
数列 已知数列an的前n项和sn=2an-4(1)求an 的通项公式(2)设bn=n×an/2(n次方),求数列bn的前n项和
数列 已知数列an的前n项和sn=2an-4
(1)求an 的通项公式(2)设bn=n×an/2(n次方),求数列bn的前n项和
数列 已知数列an的前n项和sn=2an-4(1)求an 的通项公式(2)设bn=n×an/2(n次方),求数列bn的前n项和
(1)由题得
Sn=2An-4
S(n-1)=2A(n-1)-4
上式减下式得
An=2An-2A(n-1),化简得An=2A(n-1),即An=A1*2^(n-1) (n>=2)
由于A1=S1=2A1-4,解得A1=4,即An=2^(n+1)
(2)
Bn=2n
前n项和=n(n+1)
(1)a1=S1=2a1-4
a1=4
an=Sn-S(n-1)=2an-4-[2a(n-1)-4]=2an-2a(n-1)
an=2a(n-1)
通项公式an=4n
(2)bn=2n²
∴数列bn的前n项和为n(n+1)(2n+1)/3
令S(n+1)=2a(n+1)-4 与上式相减可得a(n+1)/an=2 这是等比数列,公比为2,又a1=s1=2a1-4
的a1=4 故通项公式为an=2^(n+1)
a1=s1=2a1-4
a1=4
an=sn-s(n-1)=2an-4-[2a(n-1)-4]=2an-2a(n-1) n>=2
an=2a(n-1)
an/a(n-1)=2=q
an=2^(n+1)
Bn=2n
∴数列bn的前n项和为n(n+1)
已知数列{an}的前n项和为Sn,an+Sn=2,(n
一道关于数列 已知数列{An}的前n项和为Sn,Sn=3+2An,求An
已知数列an=n²,求数列的前n项和Sn.
已知数列{an}的前n项和sn=3+2^n,则an等于?
已知数列{an}的前n项和Sn=n2+2n,则an=?
已知数列{an}的前n项和为Sn=-n2-2n,求an
已知数列(an)的前n项和Sn=3+2^n,求an
已知数列an前n项和sn=2n²+1求an
已知数列{an}的前n项和为Sn=n^2-3n,求证:数列{an}是等差数列
已知数列{An}的前n项和Sn=3n²-2n,证明数列{An}为等差数列
已知数列{an}满足an=2n/3^n,求此数列的前n项和sn
数列{an}的通项公式an=n(n+1)/2,求数列{an}的前n项和Sn.注意:是求Sn,已知an
已知数列an的前n项和为sn 若sn=2n-an,求an
已知数列{an}的前n项和为sn,且满足sn=n
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an
已知数列(an)的前n项和为Sn,满足an+Sn=2n,证明数列(an-2)为等比数列并求出an
已知数列{an}的前n项和为Sn,且Sn=2an-n(n∈N*),求数列{an}的通项公式.
已知数列{an}的前n项和sn满足sn=an^2+bn,求证{an}是等差数列