若(a+b+c)(b+c-a)=3abc 且SinA=2SinB CosC 那么三角形ABC是什么三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:49:22
若(a+b+c)(b+c-a)=3abc 且SinA=2SinB CosC 那么三角形ABC是什么三角形
若(a+b+c)(b+c-a)=3abc 且SinA=2SinB CosC 那么三角形ABC是什么三角形
若(a+b+c)(b+c-a)=3abc 且SinA=2SinB CosC 那么三角形ABC是什么三角形
∵ sinA=2sinBcosC
∴cosC=sinA/2sinB
∴cosC=a/2b =(a^2+b^2-c^2)/2ab 整理得b^2=c^2
∴b=c
(a+b+c)(b+c-a)=3abc
所以(a+2b)(2b-a)=3ab²
4b²-a²=3ab²
4b²-4a²=3ab²-3a²
4(b+a)(b-a)=3a(b-a)
(b-a)(4b+4a-3a)=0
(b-a)(4b+a)=0
因4b+a≠0
所以a=b
因b=c
所以a=b=c
等边三角形
∵ sinA=2sinBcosC
∴cosC=sinA/2sinB
∴cosC=a/2b =(a^2+b^2-c^2)/2ab 整理得b^2=c^2
∴b=c
(a+b+c)(b+c-a)=3abc
所以(a+2b)(2b-a)=3ab
4b -a =3ab
4b -4a =3ab -3a
4(b+a)(b-a)=3a(b...
全部展开
∵ sinA=2sinBcosC
∴cosC=sinA/2sinB
∴cosC=a/2b =(a^2+b^2-c^2)/2ab 整理得b^2=c^2
∴b=c
(a+b+c)(b+c-a)=3abc
所以(a+2b)(2b-a)=3ab
4b -a =3ab
4b -4a =3ab -3a
4(b+a)(b-a)=3a(b-a)
(b-a)(4b+4a-3a)=0
(b-a)(4b+a)=0
因4b+a≠0
所以a=b
因b=c
所以a=b=c
等边三角形
收起