如图,在四边形ABCD中,M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则……如图,在四边形ABCD中,M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则∠ADB的度数为(

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:27:25

如图,在四边形ABCD中,M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则……如图,在四边形ABCD中,M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则∠ADB的度数为(
如图,在四边形ABCD中,M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则……
如图,在四边形ABCD中,M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则∠ADB的度数为(   ).
A.15°
B.17°
C.16°
D.32°

如图,在四边形ABCD中,M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则……如图,在四边形ABCD中,M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,已知∠MAN=74°,∠DBC=41°,则∠ADB的度数为(
选C

∵AM⊥CD,AN⊥BC,∠MAN=74°,∠DBC=41°即∠4=41°,
∴四边形AMCN是圆内接四边形,
∴∠MAN+∠BCD=180°,
∴∠BCD=180°-∠MAN=180°-74°=106°
∴∠3=180-∠2-∠BCD=180°-41°-106°=33°,
连接AC
∵M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC, 
∴AB=AC=AD,∠1=∠2,
∠1+∠4=∠ACB---①,
∠2+∠3=∠ACD----②
∠ACB+∠ACD=∠NCM=106°---③
由①②③得∠1+∠2+∠3+∠4=106°
∵∠1=∠2,∠4=41°,∠3=33°,
代入得:∠2=16°